Skip to main content

Recent Advances in Development of NIR-II Fluorescent Agents

  • Chapter
  • First Online:
Book cover Near Infrared-Emitting Nanoparticles for Biomedical Applications

Abstract

In the past decade, biological imaging in the second near infrared (NIR-II) window has emerged as a promising imaging method to visualize deep-tissue anatomical structures and profile internal physiological status. Owing to advantages in reduced light absorption, suppressed photon scattering, and minimized interference from tissue autofluorescence, NIR-II imaging presents advantages on improved penetration depth and high spatial resolution, opening up wide opportunities to unmask the underlying mechanisms of various physiological processes. An ideal NIR-II fluorophore for in vivo fluorescence imaging should have high quantum yields, red-shifted emission wavelengths as well as favorable pharmacokinetic properties in order to afford high imaging quality, monitor dynamic physiological process in real time, and mitigate safety concerns. Here, in this chapter, we summarize recent advances in rational design and optimization of NIR-II fluorescence imaging agents with superior properties as mentioned above, present their applications, and offer our opinions on the unique potentials of these imaging agents for future clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ntziachristos V et al (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313

    Article  CAS  Google Scholar 

  2. Guo Z et al (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 43(1):16–29

    Article  Google Scholar 

  3. Choi HS et al (2013) Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol 31(2):148

    Article  CAS  Google Scholar 

  4. Naumova AV et al (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32(8):804–818

    Article  CAS  Google Scholar 

  5. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  CAS  Google Scholar 

  6. Hof M et al (2005) Fluorescence spectroscopy in biology: Advanced methods and their applications to membranes. Springer, New York, p 305

    Book  Google Scholar 

  7. Hong G, Antaris AL, Dai HJNBE (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1(1):0010

    Article  CAS  Google Scholar 

  8. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4(11):710–711

    Article  CAS  Google Scholar 

  9. Ding F et al (2018) Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 9(19):4370–4380

    Article  CAS  Google Scholar 

  10. Welsher K et al (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4(11):773

    Article  CAS  Google Scholar 

  11. Li C, Wang Q (2018) Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 12(10):9654–9659

    Article  CAS  Google Scholar 

  12. Hong G et al (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18(12):1841

    Article  CAS  Google Scholar 

  13. Bushberg JT, Boone JM (2011) The essential physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  14. Yang Q et al (2017) Rational Design of Molecular Fluorophores for biological imaging in the NIR-II window. Adv Mater 29:12

    Google Scholar 

  15. Yang Q et al (2018) Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc 140(5):1715–1724

    Article  CAS  Google Scholar 

  16. Antaris AL et al (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15(2):235–242

    Article  CAS  Google Scholar 

  17. Zhang M et al (2018) Bright quantum dots emitting at approximately 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc Natl Acad Sci U S A 115(26):6590–6595

    Article  CAS  Google Scholar 

  18. Bruns OT et al (2017) Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng 1:0056

    Article  CAS  Google Scholar 

  19. Hong G et al (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed Engl 51(39):9818–9821

    Article  CAS  Google Scholar 

  20. Zhong Y et al (2017) Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat Commun 8(1):737

    Article  CAS  Google Scholar 

  21. Naczynski DJ et al (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 4:2199

    Article  CAS  Google Scholar 

  22. Wang R et al (2014) Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew Chem Int Ed Engl 53(45):12086–12090

    Article  CAS  Google Scholar 

  23. Hong G et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8(9):723–730

    Article  CAS  Google Scholar 

  24. Friend R et al (1999) Electroluminescence in conjugated polymers. Nat 397(6715):121

    Article  CAS  Google Scholar 

  25. Hong G et al (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206

    Article  CAS  Google Scholar 

  26. Qian G et al (2008) Band gap tunable, donor−acceptor−donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence. Chem Mater 20(19):6208–6216

    Article  CAS  Google Scholar 

  27. Sun Y et al (2016) Novel benzo-bis (1, 2, 5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem Sci 7(9):6203–6207

    Article  CAS  Google Scholar 

  28. Zhang XD et al (2016) Traumatic brain injury imaging in the second near-infrared window with a molecular Fluorophore. Adv Mater 28(32):6872–6879

    Article  CAS  Google Scholar 

  29. Desmettre T, Devoisselle J, Mordon SJSoo (2000) Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol 45(1):15–27

    Article  CAS  Google Scholar 

  30. Antaris AL et al (2017) A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun 8:15269

    Article  CAS  Google Scholar 

  31. Siegel JJCCRAL (2007) Principles of fluorescence spectroscopy. Choice Curr Rev Acad Lib 44:1196–1196

    Google Scholar 

  32. Wan H et al (2018) A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat Commun 9(1):1171

    Article  CAS  Google Scholar 

  33. Gapontsev VP et al (1981) Mechanism and parameters of the quenching of luminescence of rare-earth ions by hydroxyl impurity groups in laser phosphate glass. Sov J Quantum Electron 11(8):1101–1103

    Article  Google Scholar 

  34. Su Q et al (2012) The effect of surface coating on energy migration-mediated upconversion. J Am Chem Soc 134(51):20849–20857

    Article  CAS  Google Scholar 

  35. Zhang L, Hu HJJoP, Solids Co (2002) The effect of OH− on IR emission of Nd3+, Yb3+ and Er3+ doped tetraphosphate glasses. J Phys Chem Solids 63(4):575–579

    Article  CAS  Google Scholar 

  36. Yan Y, Faber AJ, De Waal HJJoN-CS (1995) Luminescence quenching by OH groups in highly Er-doped phosphate glasses. J Non-Cryst Solids 181(3):283–290

    Article  CAS  Google Scholar 

  37. Heer S et al (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4Nanocrystals. Adv Mater 16(23–24):2102–2105

    Article  CAS  Google Scholar 

  38. Yi G-S, Chow G-MJCoM (2007) Water-soluble NaYF4: Yb, Er (tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19(3):341–343

    Article  CAS  Google Scholar 

  39. Zhang F et al (2012) Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett 12(6):2852–2858

    Article  CAS  Google Scholar 

  40. Hines MA, Scholes GDJAM (2003) Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater 15(21):1844–1849

    Article  CAS  Google Scholar 

  41. Weidman MC et al (2014) Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 8(6):6363–6371

    Article  CAS  Google Scholar 

  42. Tang J et al (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10(10):765

    Article  CAS  Google Scholar 

  43. Ma Z et al (2018) Near-infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution. Adv Funct Mater 28(36):1803417

    Article  CAS  Google Scholar 

  44. Jin L et al (2016) Engineering interfacial structure in “Giant” PbS/CdS quantum dots for photoelectrochemical solar energy conversion. Nano Energy 30:531–541

    Article  CAS  Google Scholar 

  45. Neo DC et al (2014) Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells. ACS Nano 26(13):4004–4013

    CAS  Google Scholar 

  46. Supran GJ et al (2015) High-performance shortwave-infrared light-emitting devices using core–shell (PbS–CdS) colloidal quantum dots. Adv Mater 27(8):1437–1442

    Article  CAS  Google Scholar 

  47. Zhu S et al (2017) Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci U S A 114(5):962–967

    Article  CAS  Google Scholar 

  48. Li B et al (2018) An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew Chem Int Ed Engl 57(25):7483–7487

    Article  CAS  Google Scholar 

  49. Sheng Z et al (2018) Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I Photoacoustic imaging of Orthotopic brain tumors. Adv Mater 30:1800766

    Article  CAS  Google Scholar 

  50. Franke D et al (2016) Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat Commun 7:12749

    Article  CAS  Google Scholar 

  51. Zebibula A et al (2018) Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging. Int J Nanomed 28(9):1703451

    Google Scholar 

  52. Bashkatov A et al (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38(15):2543

    Article  CAS  Google Scholar 

  53. Diao S et al (2015) Biological imaging without autofluorescence in the second near-infrared region. Nano Res 8(9):3027–3034

    Article  CAS  Google Scholar 

  54. Diao S et al (2015) Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew Chem Int Ed Engl 54(49):14758–14762

    Article  CAS  Google Scholar 

  55. Naczynski D et al (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 4:2199

    Article  CAS  Google Scholar 

  56. Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165

    Article  CAS  Google Scholar 

  57. Maeda H et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  Google Scholar 

  58. Zhao H et al (2011) Effect of different types of surface ligands on the structure and optical property of water-soluble PbS quantum dots encapsulated by amphiphilic polymers. J Phys Chem C 115(5):1620–1626

    Article  CAS  Google Scholar 

  59. Moroz P et al (2014) Infrared emitting PbS nanocrystal solids through matrix encapsulation. Chem Mater 26(14):4256–4264

    Article  CAS  Google Scholar 

  60. Feng Y et al (2017) Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem Sci 8(5):3703–3711

    Article  CAS  Google Scholar 

  61. Wan H et al (2018) Developing a bright NIR-II Fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1. Adv Funct Mater

    Google Scholar 

  62. Wang W et al (2018) Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II Fluorophore-peptide probe. Adv Mater 30(22):1800106

    Article  CAS  Google Scholar 

  63. Saito T et al (2016) Two FOXP3+ CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22(6):679

    Article  CAS  Google Scholar 

  64. Peng M et al (2016) Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res 9(3):663–673

    Article  CAS  Google Scholar 

  65. Wang W et al (2018) Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II Fluorophore-peptide probe. Adv Mater 30(22):e1800106

    Article  CAS  Google Scholar 

  66. Sun Y et al (2017) Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci 8(5):3489–3493

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, H., Wan, H., Dai, H. (2020). Recent Advances in Development of NIR-II Fluorescent Agents. In: Benayas, A., Hemmer, E., Hong, G., Jaque, D. (eds) Near Infrared-Emitting Nanoparticles for Biomedical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-32036-2_5

Download citation

Publish with us

Policies and ethics