Skip to main content

Stem Cell Based Therapy for Lung Disease Preclinical evidence for the role of stem/stromal cells Clinical application of stem/stromal cells in lung fibrosis

  • Chapter
  • First Online:
Stem Cell-Based Therapy for Lung Disease

Abstract

Preclinical studies suggest that mesenchymal stem cells (MSCs) may represent a potential therapeutic option for the treatment of chronic lung diseases including Idiopathic Pulmonary Fibrosis (IPF). IPF is an inexorably progressive lung disease of unknown origin. Despite the recent availability of two approved treatment options, median survival remains poor at 3–5 years.

While there remains a pressing need for further exploration of interval endpoints and biomarkers, promising results of Phase 1 studies of MSCs have reduced safety concerns and encouraged further interest in the potential applicability of cell-based therapeutic approaches for chronic lung diseases like IPF. This chapter will summarize the current state of knowledge regarding the use of stem cells for the treatment of IPF, present important safety and efficacy issues highlighting current and future challenges, and address the need for large, multicenter clinical trials coupled with realistic end-points, including biomarkers, to assess treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tashiro J, Rubio GA, Limper AH, et al. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med (Lausanne). 2017;4:118.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532376

    Article  Google Scholar 

  2. Karampitsakos T, Woolard T, Bouros D, Tzouvelekis A. Toll-like receptors in the pathogenesis of pulmonary fibrosis. Eur J Pharmacol. 2017;808:35–43. https://doi.org/10.1016/j.ejphar.2016.06.045.

    Article  CAS  PubMed  Google Scholar 

  3. Tzouvelekis A, Toonkel R, Karampitsakos T, et al. Mesenchymal stem cells for the treatment of idiopathic pulmonary fibrosis. Front Med (Lausanne). 2018;5:142. https://doi.org/10.3389/fmed.2018.00142.

    Article  Google Scholar 

  4. Karampitsakos T, Tzilas V, Tringidou R, Steiropoulos P, Aidinis V, Papiris SA, et al. Lung cancer in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2017;45:1–10. https://doi.org/10.1016/j.pupt.2017.03.016.

    Article  CAS  PubMed  Google Scholar 

  5. Srour N, Thebaud B. Mesenchymal stromal cells in animal bleomycin pulmonary fibrosis models: a systematic review. Stem Cells Transl Med. 2015;4(12):1500–10. https://doi.org/10.5966/sctm.2015-0121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herazo-Maya JD, Sun J, Molyneaux PL, et al. Validation of a 52-gene risk profile for outcome prediction in patients with idiopathic pulmonary fibrosis: an international, multicentre, cohort study. Lancet Respir Med. 2017;5(11):857–68.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677538

    Article  PubMed  PubMed Central  Google Scholar 

  7. Richeldi L, Costabel U, Selman M, Kim DS, Hansell DM, Nicholson AG, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011;365:1079–87. https://doi.org/10.1056/NEJMoa1103690.

    Article  CAS  PubMed  Google Scholar 

  8. Moore Bethany B, Lawson William E, Oury Tim D, et al. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol. 2013;49:2. https://doi.org/10.1165/rcmb.2013-0094TR.

    Article  CAS  Google Scholar 

  9. Wuyts WA, Agostini C, Antoniou KM, Bouros D, Chambers RC, Cottin V, et al. The pathogenesis of pulmonary fibrosis: a moving target. Eur Respir J. 2013;41:1207–18. https://doi.org/10.1183/09031936.00073012.

    Article  CAS  PubMed  Google Scholar 

  10. Kolb M, Bonella F, Wollin L. Therapeutic targets in idiopathic pulmonary fibrosis. Respir Med. 2017;131:49–57. https://doi.org/10.1016/j.rmed.2017.07.062.

    Article  PubMed  Google Scholar 

  11. Fletcher S, Jones MG, Spinks K, Sgalla G, Marshall BG, Limbrey R, et al. The safety of new drug treatments for idiopathic pulmonary fibrosis. Expert Opin Drug Saf. 2016;15:1483–9. https://doi.org/10.1080/14740338.2016.1218470.

    Article  CAS  PubMed  Google Scholar 

  12. King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. Phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92. https://doi.org/10.1056/NEJMoa1402582.

    Article  CAS  PubMed  Google Scholar 

  13. Tzouvelekis A, Karampitsakos T, Kontou M, Granitsas A, Malliou I, Anagnostopoulos A, et al. Safety and efficacy of nintedanib in idiopathic pulmonary fibrosis: a real-life observational study. Pulm Pharmacol Ther. 2018;49:61–6. https://doi.org/10.1016/j.pupt.2018.01.006.

    Article  CAS  PubMed  Google Scholar 

  14. Tzouvelekis A, Karampitsakos T, Ntolios P, et al. Longitudinal “real-world” outcomes of pirfenidone in idiopathic pulmonary fibrosis in Greece. Front Med. 2017;4:213. https://doi.org/10.3389/fmed.2017.00213.

    Article  Google Scholar 

  15. Chagastelles PC, et al. Biology of stem cells: an overview kidney international supplements. Kidney Int Suppl (2011). 2011;1(3):63–7. https://doi.org/10.1038/kisup.2011.15.

    Article  Google Scholar 

  16. Sueblinvong V, Loi R, Eisenhauer PL, Bernstein IM, Suratt BT, Spees JL, et al. Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med. 2008;177(7):701–11. https://doi.org/10.1164/rccm.200706-859OC.

    Article  CAS  PubMed  Google Scholar 

  17. Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26(11):2902–11. https://doi.org/10.1634/stemcells.2008-0090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pierro M, Ionescu L, Montemurro T, Vadivel A, Weissmann G, Oudit G, et al. Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax. 2013;68(5):475–84. https://doi.org/10.1136/thoraxjnl-2012-202323.

    Article  PubMed  Google Scholar 

  19. Ionescu L, Byrne RN, van Haaften T, Vadivel A, Alphonse RS, Rey-Parra GJ, et al. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol Lung Cell Mol Physiol. 2012;303(11):L967–77. https://doi.org/10.1152/ajplung.00144.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sueblinvong V, Weiss DJ. Cell therapy approaches for lung diseases: current status. Curr Opin Pharmacol. 2009;9(3):268–73. https://doi.org/10.1016/j.coph.2009.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Griffin MD, Ritter T, Mahon BP. Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther. 2010;21(12):1641–55. https://doi.org/10.1089/hum.2010.156.

    Article  CAS  PubMed  Google Scholar 

  22. Wong AP, Keating A, Lu WY, Duchesneau P, Wang X, Sacher A, et al. Identification of a bone marrow-derived epithelial-like population capable of repopulating injured mouse airway epithelium. J Clin Invest. 2009;119(2):336–48. https://doi.org/10.1172/JCI36882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bustos ML, Mura M, Marcus P, Hwang D, Ludkovski O, Wong AP, et al. Bone marrow cells expressing clara cell secretory protein increase epithelial repair after ablation of pulmonary clara cells. Mol Ther. 2013;21(6):1251–8. https://doi.org/10.1038/mt.2013.53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katrina MN, Janes Sam M. Stem cells and pulmonary fibrosis: cause or cure? Proc Am Thorac Soc. 2012;9(3):164–71. https://doi.org/10.1513/pats.201201-010AW.

    Article  CAS  Google Scholar 

  25. Chang YS, Oh W, Choi SJ, Sung DK, Kim SY, Choi EY, et al. Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats. Cell Transplant. 2009;18(8):869–86. https://doi.org/10.3727/096368909X47118.

    Article  PubMed  Google Scholar 

  26. Zhang H, Fang J, Wu Y, Mai Y, Lai W, Su H. Mesenchymal stem cells protect against neonatal rat hyperoxic lung injury. Expert Opin Biol Ther. 2013;13(6):817–29. https://doi.org/10.1517/14712598.2013.778969.

    Article  CAS  PubMed  Google Scholar 

  27. Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, et al. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ. 2012;2(2):170–81. https://doi.org/10.4103/2045-8932.97603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Reilly M, Thebaud B. Animal models of bronchopulmonary dysplasia. The term rat models. Am J Physiol Lung Cell Mol Physiol. 2014;307(12):L948–58. https://doi.org/10.1152/ajplung.00160.2014.

    Article  CAS  PubMed  Google Scholar 

  29. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107(8):1164–9. https://doi.org/10.1161/01.CIR.0000058702.69484.A0.

    Article  PubMed  Google Scholar 

  30. Kung EF, Wang F, Schechner JS. In vivo perfusion of human skin substitutes with microvessels formed by adult circulating endothelial progenitor cells. Dermatol Surg. 2008;34(2):137–46. https://doi.org/10.1111/j.1524-4725.2007.34030.x.

    Article  CAS  PubMed  Google Scholar 

  31. Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Konigshoff M, Kolb M, et al. An official American Thoracic Society workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir Cell Mol Biol. 2017;56(5):667–79. https://doi.org/10.1165/rcmb.2017-0096ST.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bonniaud P et al. Optimising experimental research in respiratory diseases: an ERS statement. Eur Respir J. 2018;51(5). pii: 1702133. doi:https://doi.org/10.1183/13993003.02133-2017. Print 2018.

    Article  PubMed  Google Scholar 

  33. Shepherd BR, Enis DR, Wang F, Suarez Y, Pober JS, Schechner JS. Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J. 2006;20(10):1739–41. https://doi.org/10.1096/fj.05-5682fje.

    Article  CAS  PubMed  Google Scholar 

  34. DeKoninck P, Toelen J, Roubliova X, Carter S, Pozzobon M, Russo FM, et al. The use of human amniotic fluid stem cells as an adjunct to promote pulmonary development in a rabbit model for congenital diaphragmatic hernia. Prenat Diagn. 2015;35(9):833–40. https://doi.org/10.1002/pd.4621.

    Article  CAS  PubMed  Google Scholar 

  35. Vosdoganes P, Hodges RJ, Lim R, Westover AJ, Acharya RY, Wallace EM, et al. Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep. Am J Obstet Gynecol. 2011;205(2):e26–33. https://doi.org/10.1016/j.ajog.2011.03.054.

    Article  Google Scholar 

  36. Moodley Y, Ilancheran S, Samuel C, Vaghjiani V, Atienza D, Williams ED, et al. Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med. 2010;182(5):643–51. https://doi.org/10.1164/rccm.201001-0014OC.

    Article  CAS  PubMed  Google Scholar 

  37. Murphy S, Lim R, Dickinson H, Acharya R, Rosli S, Jenkin G, et al. Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function. Cell Transplant. 2011;20(6):909–23. https://doi.org/10.3727/096368910X543385.

    Article  PubMed  Google Scholar 

  38. Murphy SV, Lim R, Heraud P, Cholewa M, Le Gros M, de Jonge MD, et al. Human amnion epithelial cells induced to express functional cystic fibrosis transmembrane conductance regulator. PLoS One. 2012;7(9):e46533. https://doi.org/10.1371/journal.pone.004653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH. Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol. 2001;24:662–70.

    Article  CAS  PubMed  Google Scholar 

  40. Reynolds SD, Giangreco A, Power JH, Stripp BR. Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol. 2000;156:269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hodges RJ, Jenkin G, Hooper SB, Allison B, Lim R, Dickinson H, et al. Human amnion epithelial cells reduce ventilation-induced preterm lung injury in fetal sheep. Am J Obstet Gynecol. 2012;206(5):e8–15. https://doi.org/10.1016/j.ajog.2012.02.038.

    Article  Google Scholar 

  42. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol. 2001;24:671–81.

    Article  CAS  PubMed  Google Scholar 

  43. Rawlins EL, Hogan BL. Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol. 2008;295:L231–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA. Very slow turnover of β-cells in aged adult mice. Diabetes. 2005;54:2557–67.

    Article  CAS  PubMed  Google Scholar 

  45. Barker N, van de Wetering M, Clevers H. The intestinal stem cell. Genes Dev. 2008;22:1856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sime PJ, Marr RA, Gauldie D, Xing Z, Hewlett BR, Graham FL, et al. Transfer of tumor necrosis factor-alpha to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta1 and myofibroblasts. Am J Pathol. 1998;153(3):825–32. https://doi.org/10.1016/S0002-9440(10)65624-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xing Z, Tremblay GM, Sime PJ, Gauldie J. Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor-beta 1 and myofibroblast accumulation. Am J Pathol. 1997;150(1):59–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med. 2001;194(6):809–21. https://doi.org/10.1084/jem.194.6.809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buckley S, Shi W, Carraro G, Sedrakyan S, Da Sacco S, Driscoll BA, et al. The milieu of damaged alveolar epithelial type 2 cells stimulates alveolar wound repair by endogenous and exogenous progenitors. Am J Respir Cell Mol Biol. 2011;45(6):1212–21. https://doi.org/10.1165/rcmb.2010-0325OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Agostini C. Stem cell therapy for chronic lung diseases: hope and reality. Respir Med. 2010;104(Suppl 1):S86–91.

    Article  PubMed  Google Scholar 

  51. Álvarez D, Levine M, Rojas M. Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: current position. Stem Cells Cloning. 2015;8:61–5. https://doi.org/10.2147/SCCAA.S49801.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Anna S-M. Cell therapy in idiopathic pulmonary fibrosis. Med Sci. 2018;6(3):64. https://doi.org/10.3390/medsci6030064.

    Article  CAS  Google Scholar 

  53. Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L152–60. https://doi.org/10.1152/ajplung.00313.2007.

    Article  CAS  PubMed  Google Scholar 

  54. Organ L, Bacci B, Koumoundouros E, Barcham G, Kimpton W, Nowell CJ, et al. A novel segmental challenge model for bleomycin-induced pulmonary fibrosis in sheep. Exp Lung Res. 2015;41(3):115–34. https://doi.org/10.3109/01902148.2014.985806.

    Article  CAS  PubMed  Google Scholar 

  55. Stripp BR, Reynolds SD. Maintenance and repair of the bronchiolar epithelium. Proc Am Thorac Soc. 2008;5:328–33.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xu X, D'Hoker J, Stange G, Bonne S, De Leu N, Xiao X, et al. β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 2008;132:197–207.

    Article  CAS  PubMed  Google Scholar 

  57. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

    Article  CAS  PubMed  Google Scholar 

  58. Okamoto R, Yajima T, Yamazaki M, Kanai T, Mukai M, Okamoto S, Ikeda Y, Hibi T, Inazawa J, Watanabe M. Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med. 2002;8:1011–7.

    Article  CAS  PubMed  Google Scholar 

  59. Caplan AI. Mesenchymal stem cells: time to change the name. Stem Cells Transl Med. 2017;6(6):1445–51. https://doi.org/10.1002/sctm.17-0051.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  61. Stripp BR. Hierarchical organization of lung progenitor cells: is there an adult lung tissue stem cell? Proc Am Thorac Soc. 2008;5:695–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Reynolds SD, Malkinson AM. Clara cell: progenitor for the bronchiolar epithelium. Int J Biochem Cell Biol. 2009;42(1):1–4. https://doi.org/10.1016/j.biocel.2009.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davis GS, Pfeiffer LM, Hemenway DR. Interferon-gamma production by specific lung lymphocyte phenotypes in silicosis in mice. Am J Respir Cell Mol Biol. 2000;22(4):491–501. https://doi.org/10.1165/ajrcmb.22.4.3599.

    Article  CAS  PubMed  Google Scholar 

  64. Naik PK, Moore BB. Viral infection and aging as cofactors for the development of pulmonary fibrosis. Expert Rev Respir Med. 2010;4(6):759–71. https://doi.org/10.1586/ers.10.73.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Peng R, Sridhar S, Tyagi G, Phillips JE, Garrido R, Harris P, et al. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for “active” disease. PLoS One. 2013;8(4):e59348. https://doi.org/10.1371/journal.pone.0059348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol. 2002;83(3):111–9. https://doi.org/10.1046/j.1365-2613.2002.00220.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dor Y, Melton DA. How important are adult stem cells for tissue maintenance? Cell Cycle. 2004;3:1104–6.

    Article  CAS  PubMed  Google Scholar 

  68. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult β cells does not involve specialized progenitors. Dev Cell. 2007;12:817–26.

    Article  CAS  PubMed  Google Scholar 

  69. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2013;21(2):216–25. https://doi.org/10.1038/cdd.2013.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tashiro J, Elliot SJ, Gerth DJ, et al. Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis. Transl Res. 2015;166(6):554–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014;6(231):231ra47. https://doi.org/10.1126/scitranslmed.3008182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Degryse AL, Tanjore H, Xu XC, Polosukhin VV, Jones BR, McMahon FB, et al. Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2010;299(4):L442–52. https://doi.org/10.1152/ajplung.00026.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roggli V, Gibbs AR, Attanoos R, Churg A, Popper H, Corrin B, et al. Pathology of asbestosis: an update of the diagnostic criteria response to a critique. Arch Pathol Lab Med. 2016;140(9):950–2. https://doi.org/10.5858/arpa.2015-0503-SA.

    Article  PubMed  Google Scholar 

  74. Kim SJ, Cheresh P, Jablonski RP, Williams DB, Kamp DW. The role of mitochondrial DNA in mediating alveolar epithelial cell apoptosis and pulmonary fibrosis. Int J Mol Sci. 2015;16(9):21486–519. https://doi.org/10.3390/ijms160921486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li J, Poovey HG, Rodriguez JF, Brody A, Hoyle GW. Effect of platelet-derived growth factor on the development and persistence of asbestos-induced fibroproliferative lung disease. J Environ Pathol Toxicol Oncol. 2004;23(4):253–66. https://doi.org/10.1615/JEnvPathToxOncol.v23.i4.20.

    Article  PubMed  Google Scholar 

  76. Selman M, Buendia-Roldan I, Pardo A. Aging and pulmonary fibrosis. Rev Investig Clin. 2016;68(2):75–83.

    CAS  Google Scholar 

  77. Sueblinvong V, Neujahr DC, Mills ST, Roser-Page S, Ritzenthaler JD, Guidot D, et al. Predisposition for disrepair in the aged lung. Am J Med Sci. 2012;344(1):41–51. https://doi.org/10.1097/MAJ.0b013e318234c132.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Thannickal VJ, Murthy M, Balch WE, Chandel NS, Meiners S, Eickelberg O, et al. Blue journal conference. Aging and susceptibility to lung disease. Am J Respir Crit Care Med. 2015;191(3):261–9. https://doi.org/10.1164/rccm.201410-1876PP.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Englert JM, Hanford LE, Kaminski N, Tobolewski JM, Tan RJ, Fattman CL, et al. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am J Pathol. 2008;172(3):583–91. https://doi.org/10.2353/ajpath.2008.070569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Samuel CS, Zhao C, Bathgate RA, Bond CP, Burton MD, Parry LJ, et al. Relaxin deficiency in mice is associated with an age-related progression of pulmonary fibrosis. FASEB J. 2003;17(1):121–3. https://doi.org/10.1096/fj.02-0449fje.

    Article  CAS  PubMed  Google Scholar 

  81. Naik PN, Horowitz JC, Moore TA, Wilke CA, Toews GB, Moore BB. Pulmonary fibrosis induced by gamma-herpesvirus in aged mice is associated with increased fibroblast responsiveness to transforming growth factor-beta. J Gerontol A Biol Sci Med Sci. 2012;67(7):714–25. https://doi.org/10.1093/gerona/glr211.

    Article  CAS  PubMed  Google Scholar 

  82. Torres-Gonzalez E, Bueno M, Tanaka A, Krug LT, Cheng DS, Polosukhin VV, et al. Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol. 2012;46(6):748–56. https://doi.org/10.1165/rcmb.2011-0224OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Egan JJ, Adamali HI, Lok SS, Stewart JP, Woodcock AA. Ganciclovir antiviral therapy in advanced idiopathic pulmonary fibrosis: an open pilot study. Pulm Med. 2011;2011:240805. https://doi.org/10.1155/2011/240805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest. 1997;100(4):768–76. https://doi.org/10.1172/JCI119590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vicencio AG, Lee CG, Cho SJ, Eickelberg O, Chuu Y, Haddad GG, et al. Conditional overexpression of bioactive transforming growth factor-beta1 in neonatal mouse lung: a new model for bronchopulmonary dysplasia? Am J Respir Cell Mol Biol. 2004;31(6):650–6. https://doi.org/10.1165/rcmb.2004-0092OC.

    Article  CAS  PubMed  Google Scholar 

  86. Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest. 2001;107(12):1529–36. https://doi.org/10.1172/JCI12568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee CG, Cho SJ, Kang MJ, Chapoval SP, Lee PJ, Noble PW, et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med. 2004;200(3):377–89. https://doi.org/10.1084/jem.20040104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Richeldi L, Ryerson CJ, et al. Relative versus absolute change in forced vital capacity in idiopathic pulmonary fibrosis. Thorax. 2012;67:407–11. https://doi.org/10.1136/thoraxjnl-2011-201184.

    Article  PubMed  Google Scholar 

  89. Ikonomou L, Panoskaltsis-Mortari A, Wagner DE, Freishtat RJ. Weiss DJ unproven stem cell treatments for lung disease-an emerging public health problem. Am J Respir Crit Care Med. 2017;195:P13–4. https://doi.org/10.1164/rccm.201607-1461ED.

    Article  PubMed  Google Scholar 

  90. Turner L, Knoepfler P. Selling stem cells in the USA: assessing the direct-to-consumer industry. Cell Stem Cell. 2016;19:154–7. https://doi.org/10.1016/j.stem.2016.06.007.

    Article  CAS  PubMed  Google Scholar 

  91. Charo RA, Sipp D. Rejuvenating regenerative medicine regulation. N Engl J Med. 2018;378:504–5. https://doi.org/10.1056/NEJMp1715736.

    Article  PubMed  Google Scholar 

  92. Leigh T, Paul K. Selling stem cells in the USA: assessing the direct to consumer-industry. Cell Stem Cell. 2016;19(2):154–7. https://doi.org/10.1016/j.stem.2016.06.007.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn Glassberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patete, C.L., Toonkel, R.L., Glassberg, M. (2019). Stem Cell Based Therapy for Lung Disease Preclinical evidence for the role of stem/stromal cells Clinical application of stem/stromal cells in lung fibrosis. In: Burgess, J., Heijink, I. (eds) Stem Cell-Based Therapy for Lung Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-29403-8_7

Download citation

Publish with us

Policies and ethics