Skip to main content

Abstract

While neural networks have acted as a strong unifying force in the design of modern AI systems, the neural network architectures themselves remain highly heterogeneous due to the variety of tasks to be solved. In this chapter, we explore how to adapt the Layer-wise Relevance Propagation (LRP) technique used for explaining the predictions of feed-forward networks to the LSTM architecture used for sequential data modeling and forecasting. The special accumulators and gated interactions present in the LSTM require both a new propagation scheme and an extension of the underlying theoretical framework to deliver faithful explanations.

L. Arras and J. Arjona-Medina—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The global conservation is exact up to the relevance absorbed by some stabilizing term, and by the biases, see details later in Sect. 11.3.1.

  2. 2.

    https://github.com/jamie-murdoch/ContextualDecomposition.

  3. 3.

    https://github.com/jiweil/Visualizing-and-Understanding-Neural-Models-in-NLP.

  4. 4.

    Except for the LRP-prop variant, where we take \(\epsilon =0.2\). We tried following values: [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 1.0], and took the lowest one to achieve numerical stability.

  5. 5.

    Ancona et al. [1] also performed a comparative study of explanations on LSTMs, however, in order to redistribute the relevance through product layers, the authors use standard gradient backpropagation. This redistribution scheme violates one of the key underlying property of LRP, which is local relevance conservation, hence their results for LRP are not conclusive.

  6. 6.

    We use an arbitrary minimum magnitude of 0.5 only to simplify training (since sampling very small numbers would encourage the model weights to grow rapidly).

  7. 7.

    The same phenomenon can occur, on the addition problem, when using only positive numbers as input. Whereas in the specific toy tasks we considered, the cell input (\(z_t\)) is required to process the numbers to add/subtract, and the cell state (\(c_t\)) accumulates the result of the arithmetic operation.

References

  1. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  2. Arjona-Medina, J.A., Gillhofer, M., Widrich, M., Unterthiner, T., Brandstetter, J., Hochreiter, S.: RUDDER: return decomposition for delayed rewards. arXiv:1806.07857 (2018)

  3. Arras, L., Horn, F., Montavon, G., Müller, K.R., Samek, W.: “What is relevant in a text document?”: An interpretable machine learning approach. PLoS ONE 12(8), e0181142 (2017)

    Article  Google Scholar 

  4. Arras, L., Montavon, G., Müller, K.R., Samek, W.: Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the EMNLP 2017 Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA), pp. 159–168 (2017)

    Google Scholar 

  5. Arras, L., Osman, A., Müller, K.R., Samek, W.: Evaluating recurrent neural network explanations. In: Proceedings of the ACL 2019 Workshop on BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 113–126. Association for Computational Linguistics (2019)

    Google Scholar 

  6. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  7. Bakker, B.: Reinforcement learning with long short-term memory. In: Advances in Neural Information Processing Systems 14 (NIPS), pp. 1475–1482 (2002)

    Google Scholar 

  8. Bakker, B.: Reinforcement learning by backpropagation through an LSTM model/ critic. In: IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pp. 127–134 (2007)

    Google Scholar 

  9. Becker, S., Ackermann, M., Lapuschkin, S., Müller, K.R., Samek, W.: Interpreting and explaining deep neural networks for classification of audio signals. arXiv:1807.03418 (2018)

  10. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

    Article  Google Scholar 

  11. Chen, J., Song, L., Wainwright, M., Jordan, M.: Learning to explain: an information-theoretic perspective on model interpretation. In: Proceedings of the 35th International Conference on Machine Learning (ICML), vol. 80, pp. 883–892 (2018)

    Google Scholar 

  12. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational Linguistics (2014)

    Google Scholar 

  13. Denil, M., Demiraj, A., de Freitas, N.: Extraction of salient sentences from labelled documents. arXiv:1412.6815 (2015)

  14. Ding, Y., Liu, Y., Luan, H., Sun, M.: Visualizing and understanding neural machine translation. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 1150–1159. Association for Computational Linguistics (2017)

    Google Scholar 

  15. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 677–691 (2017)

    Article  Google Scholar 

  16. EU-GDPR: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Official J. Eur. Union L 119(59), 1–88 (2016)

    Google Scholar 

  17. Geiger, J.T., Zhang, Z., Weninger, F., Schuller, B., Rigoll, G.: Robust speech recognition using long short-term memory recurrent neural networks for hybrid acoustic modelling. In: Proceedings of the 15th Annual Conference of the International Speech Communication Association (INTERSPEECH), pp. 631–635 (2014)

    Google Scholar 

  18. Gers, F.A., Schmidhuber, J.: Recurrent nets that time and count. In: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), vol. 3, pp. 189–194 (2000)

    Google Scholar 

  19. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN), vol. 2, pp. 850–855 (1999)

    Google Scholar 

  20. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

  21. Gevrey, M., Dimopoulos, I., Lek, S.: Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 160(3), 249–264 (2003)

    Article  Google Scholar 

  22. Gonzalez-Dominguez, J., Lopez-Moreno, I., Sak, H., Gonzalez-Rodriguez, J., Moreno, P.J.: Automatic language identification using long short-term memory recurrent neural networks. In: Proceedings of the 15th Annual Conference of the International Speech Communication Association (INTERSPEECH), pp. 2155–2159 (2014)

    Google Scholar 

  23. Graves, A.: Generating sequences with recurrent neural networks. arXiv:1308.0850 (2014)

  24. Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2009)

    Article  Google Scholar 

  25. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 18(5–6), 602–610 (2005)

    Article  Google Scholar 

  26. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

  27. Hausknecht, M., Stone, P.: Deep recurrent Q-learning for partially observable MDPs. In: AAAI Fall Symposium Series - Sequential Decision Making for Intelligent Agents, pp. 29–37 (2015)

    Google Scholar 

  28. Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller, M., Silver, D.: Learning and transfer of modulated locomotor controllers. arXiv:1610.05182 (2016)

  29. Hochreiter, S.: Implementierung und Anwendung eines ‘neuronalen’ Echtzeit-Lernalgorithmus für reaktive Umgebungen. Practical work, Institut für Informatik, Technische Universität München (1990)

    Google Scholar 

  30. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen Netzen. Master’s thesis. Institut für Informatik, Technische Universität München (1991)

    Google Scholar 

  31. Hochreiter, S.: Recurrent neural net learning and vanishing gradient. In: Freksa, C. (ed.) Proceedings in Artificial Intelligence - Fuzzy-Neuro-Systeme 1997 Workshop, pp. 130–137. Infix (1997)

    Google Scholar 

  32. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 6(2), 107–116 (1998)

    Article  MathSciNet  Google Scholar 

  33. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kolen, J.F., Kremer, S.C. (eds.) A Field Guide to Dynamical Recurrent Networks, pp. 237–244. IEEE Press, New York (2001)

    Google Scholar 

  34. Hochreiter, S., Heusel, M., Obermayer, K.: Fast model-based protein homology detection without alignment. Bioinformatics 23(14), 1728–1736 (2007)

    Article  Google Scholar 

  35. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Technical report, FKI-207-95, Fakultät für Informatik, Technische Universität München (1995)

    Google Scholar 

  36. Hochreiter, S., Schmidhuber, J.: LSTM can solve hard long time lag problems. In: Advances in Neural Information Processing Systems 9 (NIPS), pp. 473–479 (1996)

    Google Scholar 

  37. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  38. Hochreiter, S., Younger, A.S., Conwell, P.R.: Learning to learn using gradient descent. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN), pp. 87–94 (2001)

    Chapter  Google Scholar 

  39. Horst, F., Lapuschkin, S., Samek, W., Müller, K.R., Schöllhorn, W.I.: Explaining the unique nature of individual gait patterns with deep learning. Sci. Rep. 9, 2391 (2019)

    Article  Google Scholar 

  40. Kauffmann, J., Esders, M., Montavon, G., Samek, W., Müller, K.R.,: From clustering to cluster explanations via neural networks. arXiv:1906.07633 (2019)

  41. Landecker, W., Thomure, M.D., Bettencourt, L.M.A., Mitchell, M., Kenyon, G.T., Brumby, S.P.: Interpreting individual classifications of hierarchical networks. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 32–38 (2013)

    Google Scholar 

  42. Lapuschkin, S., Binder, A., Montavon, G., Müller, K.R., Samek, W.: The LRP toolbox for artificial neural networks. J. Mach. Learn. Res. 17(114), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Lapuschkin, S., Binder, A., Müller, K.R., Samek, W.: Understanding and comparing deep neural networks for age and gender classification. In: IEEE International Conference on Computer Vision Workshops, pp. 1629–1638 (2017)

    Google Scholar 

  44. Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.: Unmasking clever hans predictors and assessing what machines really learn. Nat. Commun. 10, 1096 (2019)

    Article  Google Scholar 

  45. Li, J., Chen, X., Hovy, E., Jurafsky, D.: Visualizing and understanding neural models in NLP. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 681–691. Association for Computational Linguistics (2016)

    Google Scholar 

  46. Li, J., Monroe, W., Jurafsky, D.: Understanding neural networks through representation erasure. arXiv:1612.08220 (2017)

  47. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems 30 (NIPS), pp. 4765–4774 (2017)

    Google Scholar 

  48. Luoma, J., Ruutu, S., King, A.W., Tikkanen, H.: Time delays, competitive interdependence, and firm performance. Strateg. Manag. J. 38(3), 506–525 (2017)

    Article  Google Scholar 

  49. Marchi, E., Ferroni, G., Eyben, F., Gabrielli, L., Squartini, S., Schuller, B.: Multi-resolution linear prediction based features for audio onset detection with bidirectional LSTM neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2164–2168 (2014)

    Google Scholar 

  50. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Proceedings of the 33rd International Conference on Machine Learning (ICML), vol. 48, pp. 1928–1937 (2016)

    Google Scholar 

  51. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.-R.: Layer-wise relevance propagation: an overview. In: Samek, W. et al. (eds.) Explainable AI, LNCS 11700, pp. 193–209. Springer, Heidelberg (2019)

    Google Scholar 

  52. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  53. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Proc. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  54. Morcos, A.S., Barrett, D.G., Rabinowitz, N.C., Botvinick, M.: On the importance of single directions for generalization. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  55. Munro, P.: A dual back-propagation scheme for scalar reward learning. In: Proceedings of the Ninth Annual Conference of the Cognitive Science Society, pp. 165–176 (1987)

    Google Scholar 

  56. Murdoch, W.J., Liu, P.J., Yu, B.: Beyond word importance: contextual decomposition to extract interactions from LSTMs. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  57. Poerner, N., Schütze, H., Roth, B.: Evaluating neural network explanation methods using hybrid documents and morphosyntactic agreement. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 340–350. Association for Computational Linguistics (2018)

    Google Scholar 

  58. Rahmandad, H., Repenning, N., Sterman, J.: Effects of feedback delay on learning. Syst. Dyn. Rev. 25(4), 309–338 (2009)

    Article  Google Scholar 

  59. Rieger, L., Chormai, P., Montavon, G., Hansen, L.K., Müller, K.-R.: Structuring neural networks for more explainable predictions. In: Escalante, H.J., et al. (eds.) Explainable and Interpretable Models in Computer Vision and Machine Learning. TSSCML, pp. 115–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4_5

    Chapter  Google Scholar 

  60. Robinson, A.J.: Dynamic error propagation networks. Ph.D. thesis, Trinity Hall and Cambridge University Engineering Department (1989)

    Google Scholar 

  61. Robinson, T., Fallside, F.: Dynamic reinforcement driven error propagation networks with application to game playing. In: Proceedings of the 11th Conference of the Cognitive Science Society, Ann Arbor, pp. 836–843 (1989)

    Google Scholar 

  62. Sahni, H.: Reinforcement learning never worked, and ‘deep’ only helped a bit. himanshusahni.github.io/2018/02/23/reinforcement-learning-never-worked.html (2018)

  63. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Proceedings of the 15th Annual Conference of the International Speech Communication Association (INTERSPEECH), Singapore, pp. 338–342 (2014)

    Google Scholar 

  64. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017)

    Article  MathSciNet  Google Scholar 

  65. Schmidhuber, J.: Making the world differentiable: on using fully recurrent self-supervised neural networks for dynamic reinforcement learning and planning in non-stationary environments. Technical report, FKI-126-90 (revised), Institut für Informatik, Technische Universität München (1990). Experiments by Sepp Hochreiter

    Google Scholar 

  66. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  67. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning (ICML), vol. 70, pp. 3145–3153 (2017)

    Google Scholar 

  68. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  69. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1631–1642. Association for Computational Linguistics (2013)

    Google Scholar 

  70. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: Proceedings of the 32nd International Conference on Machine Learning (ICML), vol. 37, pp. 843–852 (2015)

    Google Scholar 

  71. Sturm, I., Lapuschkin, S., Samek, W., Müller, K.R.: Interpretable deep neural networks for single-trial EEG classification. J. Neurosci. Methods 274, 141–145 (2016)

    Article  Google Scholar 

  72. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML), vol. 70, pp. 3319–3328 (2017)

    Google Scholar 

  73. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems 27 (NIPS), pp. 3104–3112 (2014)

    Google Scholar 

  74. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press, Cambridge (2017). Draft from November 2017

    MATH  Google Scholar 

  75. Thuillier, E., Gamper, H., Tashev, I.J.: Spatial audio feature discovery with convolutional neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6797–6801 (2018)

    Google Scholar 

  76. Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., Saenko, K.: Translating videos to natural language using deep recurrent neural networks. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 1494–1504. Association for Computational Linguistics (2015)

    Google Scholar 

  77. Yang, Y., Tresp, V., Wunderle, M., Fasching, P.A.: Explaining therapy predictions with layer-wise relevance propagation in neural networks. In: IEEE International Conference on Healthcare Informatics (ICHI), pp. 152–162 (2018)

    Google Scholar 

  78. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv:1409.2329 (2015)

  79. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  80. Zhang, J., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 543–559. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_33

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Ministry for Education and Research as Berlin Big Data Centre (01IS14013A), Berlin Center for Machine Learning (01IS18037I) and TraMeExCo (01IS18056A). Partial funding by DFG is acknowledged (EXC 2046/1, project-ID: 390685689). This work was also supported by the Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00451, No. 2017-0-01779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Samek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arras, L. et al. (2019). Explaining and Interpreting LSTMs. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics