Skip to main content

Studies of the Periciliary Membrane Complex in the Syrian Hamster Photoreceptor

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1185))

Abstract

Mutations in USH2A, ADGRV1, and WHRN genes cause Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). The proteins encoded by these genes form the periciliary membrane complex (PMC) in photoreceptors. Unlike patients, who show retinal degeneration in their second decade of life, mice carrying USH2 mutations have very-late-onset retinal degeneration, although the PMC is disrupted. A similar weak retinal degeneration phenotype was also reported in ush2a mutant zebrafish. The lack of appropriate USH2 animal models hinders our understanding on PMC function in photoreceptors and retinal pathogenesis caused by USH2 mutations. In this study, we examined the molecular composition of the PMC and the morphology of the PMC and its surrounding subcellular structure in Syrian hamster photoreceptors. We demonstrate that the PMC and its neighboring structure in hamsters are similar to those in mice. Therefore, the Syrian hamster may not offer advantages over the mouse as an animal model for USH2 pathogenic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boughman JA, Vernon M, Shaver KA (1983) Usher syndrome: definition and estimate of prevalence from two high-risk populations. J Chronic Dis 36:595–603

    Article  CAS  Google Scholar 

  • Chen Q, Zou J, Shen Z et al (2014) Whirlin and PDZ domain containing 7 (PDZD7) proteins are both required to form the quaternary protein complex associated with Usher syndrome type 2. J Biol Chem 289:36070–36088

    Article  CAS  Google Scholar 

  • Dona M, Slijkerman R, Lerner K et al (2018) Usherin defects lead to early-onset retinal dysfunction in zebrafish. Exp Eye Res 173:148–159

    Article  CAS  Google Scholar 

  • Ebermann I, Scholl HP, Charbel Issa P et al (2007) A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss. Hum Genet 121:203–211

    Article  CAS  Google Scholar 

  • Eudy JD, Weston MD, Yao S et al (1998) Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science 280:1753–1757

    Article  CAS  Google Scholar 

  • Ge Z, Bowles K, Goetz K et al (2015) NGS-based Molecular diagnosis of 105 eyeGENE((R)) probands with Retinitis Pigmentosa. Sci Rep 5:18287

    Article  CAS  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  Google Scholar 

  • Lenassi E, Saihan Z, Bitner-Glindzicz M et al (2014) The effect of the common c.2299delG mutation in USH2A on RNA splicing. Exp Eye Res 122:9–12

    Article  CAS  Google Scholar 

  • Liu X, Bulgakov OV, Darrow KN et al (2007) Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A 104:4413–4418

    Article  CAS  Google Scholar 

  • McCann KE, Sinkiewicz DM, Norvelle A et al (2017) De novo assembly, annotation, and characterization of the whole brain transcriptome of male and female Syrian hamsters. Sci Rep 7:40472

    Article  CAS  Google Scholar 

  • McGee J, Goodyear RJ, McMillan DR et al (2006) The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J Neurosci 26:6543–6553

    Article  CAS  Google Scholar 

  • Rivolta C, Sweklo EA, Berson EL et al (2000) Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss. Am J Hum Genet 66:1975–1978

    Article  CAS  Google Scholar 

  • Sahly I, Dufour E, Schietroma C et al (2012) Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. J Cell Biol 199:381–399

    Article  CAS  Google Scholar 

  • Sharif AS, Yu D, Loertscher S et al (2018) C8ORF37 is required for photoreceptor outer segment disc morphogenesis by maintaining outer segment membrane protein homeostasis. J Neurosci 38:3160–3176

    Article  CAS  Google Scholar 

  • Sun T, Xu K, Ren Y et al (2018) Comprehensive molecular screening in Chinese usher syndrome patients. Invest Ophthalmol Vis Sci 59:1229–1237

    Article  CAS  Google Scholar 

  • Wang F, Wang H, Tuan HF et al (2014) Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum Genet 133:331–345

    Article  CAS  Google Scholar 

  • Weston MD, Luijendijk MW, Humphrey KD et al (2004) Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am J Hum Genet 74:357–366

    Article  CAS  Google Scholar 

  • Yang J, Wang L, Song H et al (2012) Current understanding of usher syndrome type II. Front Biosci 17:1165–1183

    Article  CAS  Google Scholar 

  • Yang J, Liu X, Zhao Y et al (2010) Ablation of whirlin long isoform disrupts the USH2 protein complex and causes vision and hearing loss. PLoS Genet 6:e1000955

    Article  Google Scholar 

  • Zou J, Luo L, Shen Z et al (2011) Whirlin replacement restores the formation of the USH2 protein complex in whirlin knockout photoreceptors. Invest Ophthalmol Vis Sci 52:2343–2351

    Article  CAS  Google Scholar 

  • Zou J, Mathur PD, Zheng T et al (2015) Individual USH2 proteins make distinct contributions to the ankle link complex during development of the mouse cochlear stereociliary bundle. Hum Mol Genet 24:6944–6957

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Eye Institute grants EY020853 (JY), EY026521 (JY), and EY014800 (core) and Research to Prevent Blindness (Department of Ophthalmology and Visual Sciences at the University of Utah). We thank Robert Marc, Bryan Jones, Jia-hui Yang, Kevin Rapp, Carl Watt, and Rebecca Pfeiffer (University of Utah) for assistance with TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, J., Li, R., Wang, Z., Yang, J. (2019). Studies of the Periciliary Membrane Complex in the Syrian Hamster Photoreceptor. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_89

Download citation

Publish with us

Policies and ethics