Skip to main content

Effects on Glial Cell Glycolysis in Schizophrenia: An Advanced Aging Phenotype?

  • Chapter
  • First Online:
Reviews on Biomarker Studies in Aging and Anti-Aging Research

Abstract

Schizophrenia is a severe and debilitating psychiatric disorder believed to have neurodevelopmental origins. Several studies have associated energy metabolism dysfunction with the disorder, mostly related to glycolysis alterations. Glucose is the obligatory energy substrate of the brain and glycolysis is the first step for its metabolism. This takes place predominantly in glial cells, astrocytes and oligodendrocytes, whereas neurons present a predominant oxidative profile. Thus, glial cells generate either lactate or pyruvate to neurons for ATP production. In addition, some aspects of schizophrenia may reflect an advanced aging phenotype with effects on various neural cell types at different stages of the disease. Given the role of glial cells in brain energy metabolism, the association of glycolysis dysfunction and the accelerated aging of neuronal cells in schizophrenia, studies focusing on those aspects can yield important insights into the causes and implications of the disorder. In turn, this may lead to novel therapeutic strategies for improved treatment of individuals suffering with this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44(7):660–669

    Article  CAS  PubMed  Google Scholar 

  2. Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 40(1):190–206

    Article  PubMed  Google Scholar 

  3. Fornito A, Harrison BJ (2012) Brain connectivity and mental illness. Front Psych 3:72. https://doi.org/10.3389/fpsyt.2012.00072

    Article  Google Scholar 

  4. Cleghorn JM, Garnett ES, Nahmias C, Firnau G, Brown GM, Kaplan R et al (1989) Increased frontal and reduced parietal glucose metabolism in acute untreated schizophrenia. Psychiatry Res 28(2):119–133

    Article  CAS  PubMed  Google Scholar 

  5. Hazlett EA, Buchsbaum MS, Kemether E, Bloom R, Platholi J, Brickman AM et al (2004) Abnormal glucose metabolism in the mediodorsal nucleus of the thalamus in schizophrenia. Am J Psychiatry 161(2):305–314

    Article  PubMed  Google Scholar 

  6. Haznedar MM, Buchsbaum MS, Hazlett EA, Shihabuddin L, New A, Siever LJ (2004) Cingulate gyrus volume and metabolism in the schizophrenia spectrum. Schizophr Res 71(2–3):249–262

    Article  PubMed  Google Scholar 

  7. Zuccoli GS, Saia-Cereda VM, Nascimento JM, Martins-de-Souza D (2017) The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front Neurosci 11:1–14

    Article  Google Scholar 

  8. Bélanger M, Allaman I, Magistretti PJ (2011) Differential effects of pro- and anti-inflammatory cytokines alone or in combinations on the metabolic profile of astrocytes. J Neurochem 116(4):564–576

    Article  CAS  PubMed  Google Scholar 

  9. Deutch AY, Roth RH (2004) Pharmacology and biochemistry of synaptic transmission: classic transmitters. In: From molecules to networks (third edition): an introduction to cellular and molecular neuroscience. Academic Press Inc; Cambridge, MA, USA, pp 207–237. ISBN: 978-0-12-397179-1

    Chapter  Google Scholar 

  10. Magistretti PJ (2004) Brain energy metabolism. In: From molecules to networks (third edition): an introduction to cellular and molecular neuroscience. Academic Press Inc; Cambridge, MA, USA, pp 67–89. ISBN: 978-0-12-397179-1

    Chapter  Google Scholar 

  11. Magistretti PJ, Allaman I (2013) Brain energy metabolism. In: Pfaff DW, Volkow ND (eds) Neuroscience in the 21st century, 2nd edn. Springer; New York, NY, USA, pp 1591–1620. ISBN-10: 1493934732

    Chapter  Google Scholar 

  12. Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32(7):1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26(7):865–877

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901

    Article  CAS  PubMed  Google Scholar 

  16. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431

    Article  CAS  PubMed  Google Scholar 

  17. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  18. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55(12):1263–1271

    Article  PubMed  Google Scholar 

  19. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91(22):10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94(1):1–14

    Article  CAS  PubMed  Google Scholar 

  21. Magistretti PJ (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209(12):2304–2311

    Article  CAS  PubMed  Google Scholar 

  22. Correale J, Ysrraelit MC, Benarroch EE (2018) Metabolic coupling of axons and glial cells: implications for multiple sclerosis progression. Neurology 90(16):737–744

    Article  PubMed  Google Scholar 

  23. Orthmann-Murphy JL, Abrams CK, Scherer SS (2008) Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci 35(1):101–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ et al (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26(10):520–522

    Article  CAS  PubMed  Google Scholar 

  26. Bliss TM, Ip M, Cheng E, Minami M, Pellerin L, Magistretti P et al (2004) Dual-gene, dual-cell type therapy against an excitotoxic insult by bolstering neuroenergetics. J Neurosci 24(27):6202–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trevisiol A, Nave KA (2015) Brain energy metabolism: conserved functions of glycolytic glial cells. Cell Metab 22(3):361–363

    Article  CAS  PubMed  Google Scholar 

  28. Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533

    Article  CAS  PubMed  Google Scholar 

  29. Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simons M, Nave K (2015) Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol 8(1):a020479. https://doi.org/10.1101/cshperspect.a020479

    Article  CAS  PubMed  Google Scholar 

  32. Morrison BM, Lee Y, Rothstein JD (2013) Oligodendroglia: metabolic supporters of axons. Trends Cell Biol 23(12):644–651

    Article  CAS  PubMed  Google Scholar 

  33. Saab AS, Tzvetanova ID, Nave KA (2013) The role of myelin and oligodendrocytes in axonal energy metabolism. Curr Opin Neurobiol 23(6):1065–1072

    Article  CAS  PubMed  Google Scholar 

  34. Young PR, Snyder WR, Vacante DA, Waickus CM, Zygas AP, Grynspan F et al (1988) The acid instability of myelin. A model for myelin degeneration in multiple sclerosis. Med Hypotheses 26(1):31–37

    Article  CAS  PubMed  Google Scholar 

  35. Káradóttir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438(7071):1162–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438(7071):1167–1171

    Article  CAS  PubMed  Google Scholar 

  37. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K et al (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91(1):119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takahashi N, Sakurai T (2013) Roles of glial cells in schizophrenia: possible targets for therapeutic approaches. Neurobiol Dis 53:49–60

    Article  CAS  PubMed  Google Scholar 

  39. Goudriaan A, de Leeuw C, Ripke S, Hultman CM, Sklar P, Sullivan PF et al (2014) Specific glial functions contribute to Schizophrenia susceptibility. Schizophr Bull 40(4):925–935

    Article  PubMed  Google Scholar 

  40. Sugai T, Kawamura M, Iritani S, Araki K, Makifuchi T, Imai C et al (2004) Prefrontal abnormality of schizophrenia revealed by DNA microarray: impact on glial and neurotrophic gene expression. Ann N Y Acad Sci 1025:84–91

    Article  CAS  PubMed  Google Scholar 

  41. Webster MJ, O’Grady J, Kleinman JE, Weickert CS (2005) Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience 133(2):453–461

    Article  CAS  PubMed  Google Scholar 

  42. Brozzi F, Arcuri C, Giambanco I, Donato R (2009) S100B protein regulates astrocyte shape and migration via interaction with Src kinase: implications for astrocyte development, activation, and tumor growth. J Biol Chem 284(13):8797–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schroeter ML, Abdul-Khaliq H, Frühauf S, Höhne R, Schick G, Diefenbacher A et al (2003) Serum S100B is increased during early treatment with antipsychotics and in deficit schizophrenia. Schizophr Res 62(3):231–236

    Article  PubMed  Google Scholar 

  44. Rothermundt M, Falkai P, Ponath G, Abel S, Bürkle H, Diedrich M et al (2004) Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry 9(10):897–899

    Article  CAS  PubMed  Google Scholar 

  45. Rothermundt M, Ponath G, Glaser T, Hetzel G, Arolt V (2004) S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. Neuropsychopharmacology 29(5):1004–1011

    Article  CAS  PubMed  Google Scholar 

  46. Kondziella D, Brenner E, Eyjolfsson EM, Markinhuhta KR, Carlsson ML, Sonnewald U (2006) Glial-neuronal interactions are impaired in the schizophrenia model of repeated MK801 exposure. Neuropsychopharmacology 31(9):1880–1887

    Article  CAS  PubMed  Google Scholar 

  47. Guest PC, Iwata K, Kato TA, Steiner J, Schmitt A, Turck CW et al (2015) MK-801 treatment affects glycolysis in oligodendrocytes more than in astrocytes and neuronal cells: insights for schizophrenia. Front Cell Neurosci 9:180. https://doi.org/10.3389/fncel.2015.00180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma TM, Abazyan S, Abazyan B, Nomura J, Yang C, Seshadri S et al (2013) Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 18(5):557–567

    Article  CAS  PubMed  Google Scholar 

  49. Xia M, Zhu S, Shevelkin A, Ross CA, Pletnikov M (2016) DISC1, astrocytes and neuronal maturation: a possible mechanistic link with implications for mental disorders. J Neurochem 138:518–524

    Article  CAS  PubMed  Google Scholar 

  50. Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M (2012) Clozapine, but not haloperidol, enhances glial d -serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br J Pharmacol 165(5):1543–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jouroukhin Y, Kageyama Y, Misheneva V, Shevelkin A, Andrabi S, Prandovszky E et al (2018) DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Transl Psychiatry 8(1):76. https://doi.org/10.1038/s41398-018-0123-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD et al (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26(9):891–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sloan SA, Barres BA (2014) Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 27(6224):75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Burns J, Job D, Bastin ME, Whalley H, Macgillivray T, Johnstone EC et al (2003) Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study. Br J Psychiatry 182:439–443

    Article  CAS  PubMed  Google Scholar 

  55. Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(S2):150–154

    Article  PubMed Central  Google Scholar 

  56. Straube B, Green A, Sass K, Kircher T (2014) Superior temporal sulcus disconnectivity during processing of metaphoric gestures in Schizophrenia. Schizophr Bull 40(4):936–944

    Article  PubMed  Google Scholar 

  57. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 60(5):443–456

    Article  PubMed  Google Scholar 

  58. Cassoli JS, Guest PC, Malchow B, Schmitt A, Falkai P, Martins-de-Souza D (2015) Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules. NPJ Schizophr 1:15034. https://doi.org/10.1038/npjschz.2015.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sigmundsson T, Suckling J, Maier M, Williams S, Bullmore E, Greenwood K et al (2001) Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatr 158(2):234–243

    Article  CAS  PubMed  Google Scholar 

  60. Bora E, Fornito A, Radua J, Walterfang M, Seal M, Wood SJ et al (2011) Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res 127(1–3):46–57

    Article  PubMed  Google Scholar 

  61. Uranova NA, Vikhreva OV, Rachmanova VI, Orlovskaya DD (2011) Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study. Schizophr Res Treatment 2011:325789. https://doi.org/10.1155/2011/325789

    Article  PubMed  PubMed Central  Google Scholar 

  62. Martins-de-Souza D, Harris LW, Guest PC, Bahn S (2011) The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal 15(7):2067–2079

    Article  CAS  PubMed  Google Scholar 

  63. Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B (2015) Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 161(1):4–18

    Article  PubMed  Google Scholar 

  64. Vikhreva OV, Rakhmanova VI, Orlovskaya DD, Uranova NA (2016) Ultrastructural alterations of oligodendrocytes in prefrontal white matter in schizophrenia: a post-mortem morphometric study. Schizophr Res 177(1–3):28–36

    Article  CAS  PubMed  Google Scholar 

  65. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 98(8):4746–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nave KA, Ehrenreich H (2014) Myelination and oligodendrocyte functions in psychiatric diseases. JAMA Psychiat 71(5):582–584

    Article  Google Scholar 

  67. Cassoli JS, Iwata K, Steiner J, Guest PC, Turck CW, Nascimento JM et al (2016) Effect of MK-801 and clozapine on the proteome of cultured human oligodendrocytes. Front Cell Neurosci 10:52. https://doi.org/10.3389/fncel.2016.00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Steiner J, Martins-de-Souza D, Schiltz K, Sarnyai Z, Westphal S, Isermann B et al (2014) Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes. Front Cell Neurosci 8:384. https://doi.org/10.3389/fncel.2014.00384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leviton A, Gressens P (2007) Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci 30(9):473–478

    Article  CAS  PubMed  Google Scholar 

  70. Najjar S, Pearlman DM (2015) Neuroinflammation and white matter pathology in schizophrenia: Systematic review. Schizophr Res 161(1):102–112

    Article  PubMed  Google Scholar 

  71. Karsten SL, Kudo LC, Jackson R, Sabatti C, Kornblum HI, Geschwind DH (2003) Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling, and metabolic networks. Dev Biol 261(1):165–182

    Article  CAS  PubMed  Google Scholar 

  72. Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93(2):182–203

    Article  CAS  PubMed  Google Scholar 

  73. Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119(1):37–53

    Article  PubMed  Google Scholar 

  74. Minardi Nascimento J, Cereda V, Zuccoli G, Gouvêa-Junqueira D, Martins de-Souza D (2018) Modeling schizophrenia with human stem cells. In: Stem cell genetics for biomedical research: past, present, and future, 1st edn. Springer; New York, NY, USA, pp 13–26. ISBN-10: 3319906941

    Chapter  Google Scholar 

  75. Raabe FJ, Galinski S, Papiol S, Falkai PG, Schmitt A, Rossner MJ (2018) Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ Schizophr 4(1):23. https://doi.org/10.1038/s41537-018-0066-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sebban C (1983) [Biochemical aspects of cerebral aging. Role of oxygen]. Presse Med 12(13):804–808

    Google Scholar 

  77. Schnack HG, van Haren NE, Nieuwenhuis M, Hulshoff Pol HE, Cahn W, Kahn RS (2016) Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study. Am J Psychiatry 173(6):607–616

    Article  PubMed  Google Scholar 

  78. Shivakumar V, Kalmady SV, Rajasekaran A, Chhabra H, Anekal AC, Narayanaswamy JC et al (2018) Telomere length and its association with hippocampal gray matter volume in antipsychotic-naïve/free schizophrenia patients. Psychiatry Res Neuroimaging 282:11–17

    Article  PubMed  Google Scholar 

  79. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD et al (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A 101:17312–17315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH et al (2006) Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psych 60:432–435

    Article  CAS  Google Scholar 

  81. Kao HT, Cawthon RM, Delisi LE, Bertisch HC, Ji F, Gordon D et al (2008) Rapid telomere erosion in schizophrenia. Mol Psychiatry 13(2):118–119

    Article  CAS  PubMed  Google Scholar 

  82. Allsopp RC (1996) Models of initiation of replicative senescence by loss of telomeric DNA. Exp Gerontol 31(1–2):235–243

    Article  CAS  PubMed  Google Scholar 

  83. Buchkovich KJ (1996) Telomeres, telomerase, and the cell cycle. Prog Cell Cycle Res 2:187–195

    Article  CAS  PubMed  Google Scholar 

  84. Preston RJ (1997) Telomeres, telomerase and chromosome stability. Radiat Res 147(5):529–534

    Article  CAS  PubMed  Google Scholar 

  85. Lansdorp PM (1995) Telomere length and proliferation potential of hematopoietic stem cells. J Cell Sci 108(Pt 1):1–6

    CAS  PubMed  Google Scholar 

  86. Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA et al (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 155(8):3711–3715

    CAS  PubMed  Google Scholar 

  87. Moore MA (1997) Stem cell proliferation: ex vivo and in vivo observations. Stem Cells 15 Suppl 1:239–248

    Article  CAS  PubMed  Google Scholar 

  88. Ravindranath N, Dalal R, Solomon B, Djakiew D, Dym M (1997) Loss of telomerase activity during male germ cell differentiation. Endocrinology 138(9):4026–4029

    Article  CAS  PubMed  Google Scholar 

  89. Flores I, Benetti R, Blasco MA (2006) Telomerase regulation and stem cell behaviour. Curr Opin Cell Biol 18:254–260

    Article  CAS  PubMed  Google Scholar 

  90. Blasco MA, Lee HW, Rizen M, Hanahan D, DePinho R, Greider CW (1997) Mouse models for the study of telomerase. Ciba Found Symp 211:160–170; discussion 170–176

    CAS  PubMed  Google Scholar 

  91. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C et al (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701–712

    Article  CAS  PubMed  Google Scholar 

  92. Cropley VL, Klauser P, Lenroot RK, Bruggemann J, Sundram S, Bousman C et al (2017) Accelerated gray and white matter deterioration with age in schizophrenia. Am J Psychiatry 174(3):286–295

    Article  PubMed  Google Scholar 

  93. Peters A (2002) Structural changes in the normally aging cerebral cortex of primates. Prog Brain Res 136:455–465

    Article  PubMed  Google Scholar 

  94. Palmer AL, Ousman SS (2018) Astrocytes and aging. Front Aging Neurosci 10:337. https://doi.org/10.3389/fnagi.2018.00337

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dabouras V, Rothermel A, Reininger-Mack A, Wien SL, Layer PG, Robitzki AA (2014) Exogenous application of glucose induces aging in rat cerebral oligodendrocytes as revealed by alteration in telomere length. Neurosci Lett 368(1):68–72

    Article  CAS  Google Scholar 

  96. Szebeni A, Szebeni K, DiPeri T, Chandley MJ, Crawford JD, Stockmeier CA et al (2014) Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress. Int J Neuropsychopharmacol 17(10):1579–1589

    Article  CAS  PubMed  Google Scholar 

  97. Caporaso GL, Chao MV (2001) Telomerase and oligodendrocyte differentiation. J Neurobiol 49(3):224–234

    Article  CAS  PubMed  Google Scholar 

  98. Tse KH, Herrup K (2017) DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 161(Pt A):37–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by FAPESP (São Paulo Research Foundation; grants 2017/25588-1, 2018/14666-4), Serrapilheira Institute (grant Serra-1709-16349), and CNPq (Brazilian National Council for Scientific and Technological Development; grant 302453/2017-2)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Martins-de-Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zuccoli, G.S., Guest, P.C., Martins-de-Souza, D. (2019). Effects on Glial Cell Glycolysis in Schizophrenia: An Advanced Aging Phenotype?. In: Guest, P. (eds) Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology(), vol 1178. Springer, Cham. https://doi.org/10.1007/978-3-030-25650-0_2

Download citation

Publish with us

Policies and ethics