Skip to main content

Synchronous Multi-particle Cellular Automaton Model of Diffusion with Self-annihilation

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2019)

Abstract

In this paper a synchronous multi-particle cellular automaton model of diffusion with self-annihilation is developed based on the multi-particle cellular automata suggested previously by other authors. The models of pure diffusion and diffusion with self-annihilation are described and investigated. The correctness of the models is tested separately against the exact solutions of the diffusion equation for different 3D domains. The accuracy of the cellular automata simulation results is investigated depending on the number of cells per a single physical unit. The calculation time of cellular automaton simulation of diffusion with self-annihilation is compared with the calculation time of the Monte Carlo random walk on parallelepipeds method for different domain sizes. The parallel implementation of the cellular automaton model is developed and efficiency of the parallel code is analyzed.

Supported by the Russian Science Foundation under Grant 19-11-00019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, G.D.: Numerical Solution of Partial Differential Equations (Finite Difference Methods). Oxford University Press, Oxford (1990)

    Google Scholar 

  2. Courant, R., Friedrichsund, K., Lewy, H.: \(\ddot{\rm U}\)ber die partiellen Differentialgleichungen der mathematischen Physik. Math. Annalen 100, 32–74 (1928)

    Article  MathSciNet  Google Scholar 

  3. Sabelfeld, K.K.: Monte Carlo Methods in Boundary Value Problems. Springer, Heidelberg (1991)

    Book  Google Scholar 

  4. Sabelfeld, K.K.: Random walk on spheres method for solving drift-diffusion problems. Monte Carlo Methods Appl. 22(4), 265–275 (2016)

    Article  MathSciNet  Google Scholar 

  5. Sabelfeld, K.K.: Random walk on spheres algorithm for solving transient drift-diffusion-reaction problems. Monte Carlo Methods Appl. 23(3), 189–212 (2017)

    Article  MathSciNet  Google Scholar 

  6. Sabelfeld, K.: Stochastic simulation methods for solving systems of isotropic and anisotropic drift-diffusion-reaction equations and applications in cathodoluminescence imaging. Submitted to Probabilistic Engineering Mechanics (2018)

    Google Scholar 

  7. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, USA (1987)

    MATH  Google Scholar 

  8. Weimar, J.R.: Cellular automata for reaction-diffusion systems. Parallel Comput. 23, 1699–1715 (1997)

    Article  MathSciNet  Google Scholar 

  9. Weimar, J.R.: Three-dimensional cellular automata for reaction-diffusion systems. Fundamenta Informaticae 52(1–3), 277–284 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Weimar, J.R., Tyson, J.J., Watson, L.T.: Diffusion and wave propagation in cellular automaton models of excitable media. Physica D 55(3–4), 309–327 (1992)

    Article  MathSciNet  Google Scholar 

  11. Chopard, B.: Cellular automata modeling of physical systems. In: Meyers, R. (ed.) Computational Complexity, pp. 407–433. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1800-9_27

    Chapter  Google Scholar 

  12. Frenkel, D., Ernst, M.H.: Simulation of diffusion in a two-dimensional lattice-gas cellular automaton: a test of mode-coupling theory. Phys. Rev. Lett. 63(20), 2165–2168 (1989)

    Article  Google Scholar 

  13. Chopard, B., Droz, M.: Cellular automata model for the diffusion equation. J. Stat. Phys. 64(3–4), 859–892 (1991)

    Article  MathSciNet  Google Scholar 

  14. Dab, D., Boon, J.-P.: Cellular automata approach to reaction-diffusion systems. In: Manneville, P., Boccara, N., Vichniac, G.Y., Bidaux, R. (eds.) Cellular Automata and Modeling of Complex Physical Systems, pp. 257–273. Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-75259-9_23

    Chapter  Google Scholar 

  15. Karapiperis, T., Blankleider, B.: Cellular automaton model of reaction-transport processes. Physica D 78, 30–64 (1994)

    Article  Google Scholar 

  16. Bandman, O.L.: Comparative study of cellular-automata diffusion models. In: Malyshkin, V. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 395–409. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48387-X_41

    Chapter  Google Scholar 

  17. Bandman, O.: Cellular automata diffusion models for multicomputer implementation. Bull. Nov. Comp. Center Comp. Sci. 36, 21–31 (2014)

    MATH  Google Scholar 

  18. Medvedev, Y.: Multi-particle Cellular-automata models for diffusion simulation. In: Hsu, C.-H., Malyshkin, V. (eds.) MTPP 2010. LNCS, vol. 6083, pp. 204–211. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14822-4_23

    Chapter  Google Scholar 

  19. Chopard, B., Frachebourg, L., Droz, M.: Multiparticle lattice gas automata for reaction diffusion systems. Int. J. Mod. Phys. C 05(01), 47–63 (1994)

    Article  Google Scholar 

  20. Medvedev, Yu.: Automata noise in diffusion cellular-automata models. Bull. Nov. Comp. Center Comp. Sci. 30, 43–52 (2010)

    Google Scholar 

  21. Bandman, O.: The concept of invariants in reaction-diffusion cellular-automata. Bull. Nov. Comp. Center Comp. Sci. 33, 23–34 (2012)

    MATH  Google Scholar 

  22. Kortl\(\ddot{\rm u}\)ke, O.: A general cellular automaton model for surface reactions. J. Phys. A Math. Gen. 31(46), 9185–9197 (1998)

    Google Scholar 

  23. Mai, J., von Niessen, W.: Diffusion and reaction in multicomponent systems via cellular-automaton modeling: \(A+B_2\). J. Chem. Phys. 98(3), 2032–2037 (1993)

    Article  Google Scholar 

  24. Rice, J.A.: Mathematical Statistics and Data Analysis, 3rd edn. Thomson Brooks/Cole, USA (2006)

    Google Scholar 

  25. Sabelfeld, K.K., Kireeva, A.E.: A meshless random walk on parallelepipeds algorithm for solving transient anisotropic diffusion-recombination equations and applications to cathodoluminescence imaging. Submitted to Numerische Mathematik (2018)

    Google Scholar 

  26. MVS-10P cluster, JSCC RAS. http://www.jscc.ru. Accessed 22 May 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiya Kireeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kireeva, A., Sabelfeld, K.K., Kireev, S. (2019). Synchronous Multi-particle Cellular Automaton Model of Diffusion with Self-annihilation. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2019. Lecture Notes in Computer Science(), vol 11657. Springer, Cham. https://doi.org/10.1007/978-3-030-25636-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25636-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25635-7

  • Online ISBN: 978-3-030-25636-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics