Skip to main content

Downstream Green Processes for Recovery of Bioactives from Algae

  • Chapter
  • First Online:
Grand Challenges in Algae Biotechnology

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB))

Abstract

Nowadays, macro- and microalgae are being increasingly used as promising raw materials for the food, cosmetic and pharmaceutical industries, thanks to their biodiversity and its variety on valuable bioactive compounds such as carbohydrates, polyunsaturated lipids, proteins and pigments, among others. Furthermore, more efficient and environmentally friendly processes for bioactives’ recovery are requested not only by the industry but also by the society. This chapter presents an overview on the use of downstream green processes, mainly based on compressed fluids extraction techniques, in order to recover bioactives from algae that can be lately used in several potential applications for the food, pharmaceutical and cosmetic industries, which is the pillar of algae-based biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam F, Abert-Vian M, Peltier G et al (2012) “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol 114:457–465

    Article  CAS  PubMed  Google Scholar 

  • Aravantinou AF, Manariotis ID (2016) Effect of operating conditions on Chlorococcum sp. growth and lipid production. J Environ Chem Eng 4(1):1217–1223

    Article  CAS  Google Scholar 

  • Ariede MB, Candido TM, Morocho Jacome AL et al (2017) Cosmetic attributes of algae – a review. Algal Res 25:483–487

    Article  Google Scholar 

  • Baghel RS, Trivedi N, Gupta V et al (2015) Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chem 17(4):2436–2443

    Article  CAS  Google Scholar 

  • Bellou S, Baeshen MN, Elazzazy AM et al (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32(8):1476–1493

    Article  CAS  PubMed  Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T et al (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – response surface methodology analysis. Energy Convers Manage 50(2):262–267

    Article  CAS  Google Scholar 

  • Blunt JW, Munro MHG (2008) Dictionary of marine natural products, 1st edn. Champmann & Hall/CRC, Boca Raton

    Google Scholar 

  • Bong SC, Loh SP (2013) A study of fatty acid composition and tocopherol content of lipid extracted from marine microalgae, Nannochloropsis oculata and Tetraselmis suecica, using solvent extraction and supercritical fluid extraction. Int Food Res J 20(2):721–729

    CAS  Google Scholar 

  • Boussiba S, Bing W, Yuan JP et al (1999) Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnol Lett 21(7):601–604

    Article  CAS  Google Scholar 

  • Cadoret JP, Garnier M, Saint-Jean B (2012) Microalgae, functional genomics and biotechnology. In: Piganeau G (ed) Genomic insights into the biology of algae, vol 64. Academic, Cambridge, pp 285–341

    Chapter  Google Scholar 

  • Caroprese M, Albenzio M, Ciliberti MG et al (2012) A mixture of phytosterols from Dunaliella tertiolecta affects proliferation of peripheral blood mononuclear cells and cytokine production in sheep. Vet Immunol Immunopathol 150(1–2):27–35

    Article  CAS  PubMed  Google Scholar 

  • Carullo D, Abera BD, Casazza AA et al (2018) Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res 31:60–69

    Article  Google Scholar 

  • Carvalho JCM, Matsudo MC, Bezerra RP et al (2014) Microalgae bioreactors. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries, cultivation of cells and products, vol 1. Springer, Dordrecht, pp 83–126

    Chapter  Google Scholar 

  • Catarino MD, Silva AMS, Cardoso SM (2017) Fucaceae: a source of bioactive phlorotannins. Int J Mol Sci 18(6):1327

    Article  PubMed Central  CAS  Google Scholar 

  • Chen J, Shearer GC, Chen Q et al (2011) Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation 123(6):584–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Jiao R, Jiang Y et al (2014) Algal sterols are as effective as beta-sitosterol in reducing plasma cholesterol concentration. J Agric Food Chem 62(3):675–681

    Article  CAS  PubMed  Google Scholar 

  • Christaki E, Bonos E, Giannenas I et al (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93(1):5–11

    Article  CAS  PubMed  Google Scholar 

  • Ciliberti MG, Francavilla M, Intini S et al (2017) Phytosterols from Dunaliella tertiolecta reduce cell proliferation in sheep fed flaxseed during post partum. Mar Drugs 15(7):216

    Article  PubMed Central  CAS  Google Scholar 

  • Cunico LP, Turner C (2017) Supercritical fluids and gas-expanded liquids. In: Pena-Pereira F, Tobiszewski M (eds) The application of green solvents in separation processes. Elsevier, Atlanta, pp 155–214

    Chapter  Google Scholar 

  • de Jesus Raposo MF, Miranda Bernardo de Morais AM (2015) Microalgae for the prevention of cardiovascular disease and stroke. Life Sci 125:32–41

    Article  CAS  Google Scholar 

  • de Jesus Raposo MF, Santos Costa de Morais RM, Miranda Bernardo de Morais AM (2013) Health applications of bioactive compounds from marine microalgae. Life Sci 93(15):479–486

    Article  PubMed  CAS  Google Scholar 

  • Dejoye C, Vian MA, Lumia G et al (2011) Combined extraction processes of lipid from Chlorella vulgaris microalgae: microwave prior to supercritical carbon dioxide extraction. Int J Mol Sci 12(12):9332–9341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derwenskus F, Metz F, Gille A et al (2019) Pressurized extraction of unsaturated fatty acids and carotenoids from wet Chlorella vulgaris and Phaeodactylum tricornutum biomass using subcritical liquids. GCB Bioenergy 11(1):335–344

    Article  CAS  Google Scholar 

  • Diaz-Santos E, Vila M, Vigara J et al (2016) A new approach to express transgenes in microalgae and its use to increase the flocculation ability of Chlamydomonas reinhardtii. J Appl Phycol 28(3):1611–1621

    Article  CAS  Google Scholar 

  • Diplock AT, Agget PJ, Ashwell M et al (1999) Scientific concepts of functional foods in Europe consensus document. Br J Nutr 81(4):S1–S27

    Article  CAS  Google Scholar 

  • FAO (2010) Fats and fatty acids in human nutrition. Report of an expert consulation. FAO Food Nutr Pap 91:1–166

    Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture [Online]. http://www.fao.org/state-of-fisheries-aquaculture/en/. Accessed 17 Sept 2018

  • Gallego R, Montero L, Cifuentes A et al (2018) Green extraction of bioactive compounds from microalgae. J Anal Test 2(2):109–123

    Article  Google Scholar 

  • García PA, Hernández AP, San Feliciano A et al (2018) Bioactive prenyl- and terpenyl-quinones/hydroquinones of marine origin. Mar Drugs 16(9):292

    Article  PubMed Central  CAS  Google Scholar 

  • Gilbert-Lopez B, Mendiola JA, Fontecha J et al (2015) Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery. Green Chem 17(9):4599–4609

    Article  CAS  Google Scholar 

  • Gilbert-Lopez B, Barranco A, Herrero M et al (2017a) Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res Int 99:1056–1065

    Article  CAS  PubMed  Google Scholar 

  • Gilbert-Lopez B, Mendiola JA, van den Broek LAM et al (2017b) Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res 24:111–121

    Article  Google Scholar 

  • Giles GE, Mahoney CR, Kanarek RB (2013) Omega-3 fatty acids influence mood in healthy and depressed individuals. Nutr Rev 71(11):727–741

    Article  PubMed  Google Scholar 

  • Giros A, Grzybowski M, Sohn VR et al (2009) Regulation of colorectal cancer cell apoptosis by the n-3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic. Cancer Prev Res 2(8):732–742

    Article  CAS  Google Scholar 

  • Golmakani MT, Mendiola JA, Rezaei K et al (2012) Expanded ethanol with CO2 and pressurized ethyl lactate to obtain fractions enriched in gamma-linolenic acid from Arthrospira platensis (Spirulina). J Supercrit Fluids 62:109–115

    Article  CAS  Google Scholar 

  • Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34(8):1396–1412

    Article  CAS  PubMed  Google Scholar 

  • Gouveia L, Coutinho C, Mendonca E et al (2008) Functional biscuits with PUFA-omega 3 from Isochrysis galbana. J Sci Food Agric 88(5):891–896

    Article  CAS  Google Scholar 

  • Grosso C, Valentao P, Ferreres F et al (2015) Alternative and efficient extraction methods for marine-derived compounds. Mar Drugs 13(5):3182–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Güven KC, Percot A, Sezik E (2010) Alkaloids in marine algae. Mar Drugs 8(2):269–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hadiyanto H, Suttrisnorhadi (2016) Response surface optimization of ultrasound assisted extraction (UAE) of phycocyanin from microalgae Spirulina platensis. Emir J Food Agric 28(4):227–234

    Article  Google Scholar 

  • Hagen C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37(2):217–226

    Article  Google Scholar 

  • Hamed I, Ozogul F, Ozogul Y et al (2015) Marine bioactive compounds and their health benefits: a review. Comp Rev Food Sci F 14(4):446–465

    Article  CAS  Google Scholar 

  • Hernandez D, Solana M, Riano B et al (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour Technol 170:370–378

    Article  CAS  PubMed  Google Scholar 

  • Herrero M, Ibáñez E (2015) Green processes and sustainability: an overview on the extraction of high added-value products from seaweeds and microalgae. J Supercrit Fluids 96:211–216

    Article  CAS  Google Scholar 

  • Herrero M, Ibáñez E (2018) Green extraction processes, biorefineries and sustainability: recovery of high added-value products from natural sources. J Supercrit Fluids 134:252–259

    Article  CAS  Google Scholar 

  • Herrero M, Castro-Puyana M, Mendiola JA et al (2013) Compressed fluids for the extraction of bioactive compounds. TrAC-Trends Anal Chem 43:67–83

    Article  CAS  Google Scholar 

  • Herrero M, Mendiola JA, Ibáñez E (2017) Gas expanded liquids and switchable solvents. Curr Opin Green Sustain Chem 5:24–30

    Article  Google Scholar 

  • Hoang Van C, Eun J-B (2017) Marine carotenoids: bioactivities and potential benefits to human health. Crit Rev Food Sci Nutr 57(12):2600–2610

    Article  CAS  Google Scholar 

  • Hodaifa G, Martinez ME, Sanchez S (2008) Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour Technol 99(5):1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Yang XQ, Li LH et al (2015) Antioxidant properties of microalgae protein hydrolysates prepared by neutral protease digestion. Appl Mech Mater 707:149–153

    Article  CAS  Google Scholar 

  • Huo S, Wang Z, Cui F et al (2015) Enzyme-assisted extraction of oil from wet microalgae Scenedesmus sp G4. Energies 8(8):8165–8174

    Article  CAS  Google Scholar 

  • Ibáñez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93(4):703–709

    Article  PubMed  CAS  Google Scholar 

  • Ibáñez E, Gilbert-López B, Mendiola JA et al (2017) Integrated green extraction processes for downstream processing of microalgae wet biomass (GREENμWETBIO). Spain patent application

    Google Scholar 

  • Jaime L, Rodriguez-Meizoso I, Cifuentes A et al (2010) Pressurized liquids as an alternative process to antioxidant carotenoids’ extraction from Haematococcus pluvialis microalgae. Lwt-Food Sci Technol 43(1):105–112

    Article  CAS  Google Scholar 

  • Jerez-Martel I, Garcia-Poza S, Rodriguez-Martel G et al (2017) Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J Food Qual 4:1–8

    Article  CAS  Google Scholar 

  • Juin C, Cherouvrier J-R, Thiery V et al (2015) Microwave-assisted extraction of phycobiliproteins from Porphyridium purpureum. Appl Biochem Biotechnol 175(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Kapoore RV, Butler TO, Pandhal J et al (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7(1):18

    Article  PubMed Central  CAS  Google Scholar 

  • Kazlowska K, Lin H-TV, Chang S-H et al (2013) In vitro and in vivo anticancer effects of sterol fraction from red algae Porphyra dentata. Evid-Based Compl Alt 493869

    Google Scholar 

  • Kim SK, Himaya SWA (2011) Medicinal effects of phlorotannins from marine brown algae. In: Kim SK (ed) Advances in food and nutrition research, Marine medicinal foods: implications and applications, macro and microalgae, vol 64. Elsevier Academic, Atlanta, pp 97–109

    Google Scholar 

  • Kumari P, Kumar M, Gupta V et al (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem 120(3):749–757

    Article  CAS  Google Scholar 

  • Kumari P, Bijo AJ, Mantri VA et al (2013) Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 86:44–56

    Article  CAS  PubMed  Google Scholar 

  • Leon R, Fernandez E (2007) Nuclear transformation of eukaryotic microalgae – historical overview, achievements and problems. Adv Exp Med Biol 616:1–11

    Article  PubMed  Google Scholar 

  • Luo X, Su P, Zhang W (2015) Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar Drugs 13(7):4231–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv J, Yang X, Ma H et al (2015) The oxidative stability of microalgae oil (Schizochytrium aggregatum) and its antioxidant activity after simulated gastrointestinal digestion: relationship with constituents. Eur J Lipid Sci Technol 117(12):1928–1939

    Article  CAS  Google Scholar 

  • Machado FRS Jr, Trevisol TC, Boschetto DL et al (2016) Technological process for cell disruption, extraction and encapsulation of astaxanthin from Haematococcus pluvialis. J Biotechnol 218:108–114

    Article  CAS  PubMed  Google Scholar 

  • Macías-Sánchez MD, Fernandez-Sevilla JM, Acien-Fernandez FG et al (2010) Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem 123(3):928–935

    Article  CAS  Google Scholar 

  • Marris E (2006) Black is the new green. Nature 442:624

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Guerra E, Gude VG, Mondala A et al (2014) Extractive-transesterification of algal lipids under microwave irradiation with hexane as solvent. Bioresour Technol 156:240–247

    Article  CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Matos J, Cardoso C, Bandarra NM et al (2017) Microalgae as healthy ingredients for functional food: a review. Food Funct 8(8):2672–2685

    Article  CAS  PubMed  Google Scholar 

  • Mendiola JA, Castro-Puyana M, Herrero M et al (2013) Green foodomics. In: Cifuentes A (ed) Foodomics: advanced mass spectrometry in modern food science and nutrition. Wiley, Hoboken, pp 471–505

    Chapter  Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol Biotechnol 17(5–6):477–489

    Article  CAS  Google Scholar 

  • Montero L, Sanchez-Camargo AP, Garcia-Canas V et al (2016) Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J Chrom A 1428:115–125

    Article  CAS  Google Scholar 

  • Munish P, Deepika S, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30(1):37–44

    Article  CAS  Google Scholar 

  • Oncel SS (2017) Microalgae, taking over the role in the hydrogen future. In: Pires JCM (ed) Recent advances in renewable energy, Microalgae as a source of bioenergy: products, processes and economics, vol 1. Bentham Science, Sharjah, pp 98–149

    Google Scholar 

  • Ota M, Watanabe H, Kato Y et al (2009) Carotenoid production from Chlorococcum littorale in photoautotrophic cultures with downstream supercritical fluid processing. J Sep Sci 32(13):2327–2335

    Article  CAS  PubMed  Google Scholar 

  • Otero P, Quintana SE, Reglero G et al (2018) Pressurized liquid extraction (PLE) as an innovative green technology for the effective enrichment of Galician algae extracts with high quality fatty acids and antimicrobial and antioxidant properties. Mar Drugs 16(5):156

    Article  PubMed Central  CAS  Google Scholar 

  • Pangestuti R, Kim S-K (2011) Neuroprotective effects of marine algae. Mar Drugs 9(5):803–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672

    Article  CAS  Google Scholar 

  • Patil PD, Reddy H, Muppaneni T et al (2013) In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Bioresour Technol 139:308–315

    Article  CAS  PubMed  Google Scholar 

  • Pieber S, Schober S, Mittelbach M (2012) Pressurized fluid extraction of polyunsaturated fatty acids from the microalga Nannochloropsis oculata. Biomass Bioenerg 47:474–482

    Article  CAS  Google Scholar 

  • Plaza M, Herrero M, Cifuentes A et al (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57(16):7159–7170

    Article  CAS  PubMed  Google Scholar 

  • Plaza M, Santoyo S, Jaime L et al (2010) Screening for bioactive compounds from algae. J Pharm Biomed Anal 51(2):450–455

    Article  CAS  PubMed  Google Scholar 

  • Plaza M, Santoyo S, Jaime L et al (2012) Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. Lwt-Food Sci Technol 46(1):245–253

    Article  CAS  Google Scholar 

  • Pottel L, Lycke M, Boterberg T et al (2014) Omega-3 fatty acids: physiology, biological sources and potential applications in supportive cancer care. Phytochem Rev 13(1):223–244

    Article  CAS  Google Scholar 

  • Reyes FA, Mendiola JA, Ibáñez E et al (2014) Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol. J Supercrit Fluids 92:75–83

    Article  CAS  Google Scholar 

  • Reyes FA, Mendiola JA, Suarez-Alvarez S et al (2016) Adsorbent-assisted supercritical CO2 extraction of carotenoids from Neochloris oleoabundans paste. J Supercrit Fluids 112:7–13

    Article  CAS  Google Scholar 

  • Rodriguez-Meizoso I, Jaime L, Santoyo S et al (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed Anal 51(2):456–463

    Article  CAS  PubMed  Google Scholar 

  • Samarakoon K, Jeon Y-J (2012) Bio-functionalities of proteins derived from marine algae – a review. Food Res Int 48(2):948–960

    Article  CAS  Google Scholar 

  • Samarakoon KW, Ko J-Y, Lee J-H et al (2014) Apoptotic anticancer activity of a novel fatty alcohol ester isolated from cultured marine diatom, Phaeodactylum tricornutum. J Funct Food 6:231–240

    Article  CAS  Google Scholar 

  • Sánchez-Camargo AdP, Mendiola JA, Ibáñez E (2018) Gas expanded-liquids. In: Hunt AJ, Attard TM (eds) Supercritical and other high-pressure solvent systems: for extraction, reaction and material processing, green chemistry Series No. 57. The Royal Society of Chemistry, London, pp 512–531

    Google Scholar 

  • Saravana PS, Getachew AT, Yeon-Jin C et al (2017) Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2. J Supercrit Fluids 120(Part 2):295–303

    Article  CAS  Google Scholar 

  • Sathasivam R, Ki JS (2018) A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar Drugs 16(1):26

    Article  PubMed Central  CAS  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56(8):365–379

    Article  CAS  PubMed  Google Scholar 

  • Solana M, Rizza CS, Bertucco A (2014) Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina. J Supercrit Fluids 92:311–318

    Article  CAS  Google Scholar 

  • Souza RB, Frota AF, Silva J et al (2018) In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: antimicrobial, anticancer and neuroprotective potential. Int J Biol Macromol 112:1248–1256

    Article  CAS  PubMed  Google Scholar 

  • Subhadra B, Grinson G (2011) Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric 91(1):2–13

    Article  CAS  PubMed  Google Scholar 

  • Suganya T, Varman M, Masjuki HH et al (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energy Rev 55:909–941

    Article  CAS  Google Scholar 

  • Tanniou A, Vandanjon L, Incera M et al (2014) Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its European range from Norway to Portugal. J Appl Phycol 26(2):1215–1230

    CAS  Google Scholar 

  • Tatke P, Jaiswal Y (2011) An overview of microwave assisted extraction and its applications in herbal drug research. Res J Med Pla 5(1):21–31

    Article  Google Scholar 

  • Thanh-Sang V, Dai-Hung N, Kim S-K (2012) Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process Biochem 47(3):386–394

    Article  CAS  Google Scholar 

  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ et al (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    Article  CAS  PubMed  Google Scholar 

  • Villarruel-Lopez A, Ascencio F, Nuno K (2017) Microalgae, a potential natural functional food source – a review. Polish J Food Nutr Sci 67(4):251–263

    Article  Google Scholar 

  • Yates CM, Calder PC, Rainger GE (2014) Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther 141(3):272–282

    Article  CAS  PubMed  Google Scholar 

  • Yen H-W, Hu IC, Chen C-Y et al (2013) Microalgae-based biorefinery – from biofuels to natural products. Bioresour Technol 135:166–174

    Article  CAS  PubMed  Google Scholar 

  • Yoshie-Stark Y, Hsieh Y-P, Suzuki T (2003) Distribution of flavonoids and related compounds from seaweeds in Japan. J Tokyo Univ Fish 89:1–6

    Google Scholar 

  • Yu Ran H, Yousof Ali M, Mi-Hee W et al (2015) Anti-diabetic and anti-inflammatory potential of the edible brown alga Hizikia fusiformis. J Food Biochem 39(4):417–428

    Article  CAS  Google Scholar 

  • Zhao G, Chen X, Wang L et al (2013) Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresour Technol 128:337–344

    Article  CAS  PubMed  Google Scholar 

  • Zuorro A, Maffei G, Lavecchia R (2016) Optimization of enzyme-assisted lipid extraction from Nannochloropsis microalgae. J Taiwan Inst Chem E 67:106–114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ibáñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, M., Gallego, R., Mendiola, J.A., Ibáñez, E. (2019). Downstream Green Processes for Recovery of Bioactives from Algae. In: Hallmann, A., Rampelotto, P. (eds) Grand Challenges in Algae Biotechnology. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-25233-5_11

Download citation

Publish with us

Policies and ethics