Skip to main content

Reflections on Model Organisms in Evolutionary Developmental Biology

  • Chapter
  • First Online:
Evo-Devo: Non-model Species in Cell and Developmental Biology

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 68))

Abstract

This chapter reflects on and makes explicit the distinctiveness of reasoning practices associated with model organisms in the context of evolutionary developmental research. Model organisms in evo-devo instantiate a unique synthesis of model systems strategies from developmental biology and comparative strategies from evolutionary biology that negotiate a tension between developmental conservation and evolutionary change to address scientific questions about the evolution of development and the developmental basis of evolutionary change. We review different categories of model systems that have been advanced to understand practices found in the life sciences in order to comprehend how evo-devo model organisms instantiate this synthesis in the context of three examples: the starlet sea anemone and the evolution of bilateral symmetry, leeches and the origins of segmentation in bilaterians, and the corn snake to understand major evolutionary change in axial and appendicular morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ankeny R, Leonelli S (2011) What’s so special about model organisms? Stud Hist Phil Sci 42:313–323

    Article  Google Scholar 

  • Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, Pfeffer PL (2011) Trophectoderm lineage determination in cattle. Dev Cell 20:244–255

    Article  CAS  PubMed  Google Scholar 

  • Bier E, McGinnis W (2003) Model organisms in the study of development and disease. In: Epstein CJ, Erickson RP, Wynshaw-Boris A (eds) Molecular basis of inborn errors of development. Oxford University Press, New York, pp 25–45

    Google Scholar 

  • Bolker JA (1995) Model systems in developmental biology. BioEssays 17:451–455

    Article  CAS  PubMed  Google Scholar 

  • Bolker JA (2009) Exemplary and surrogate models: two modes of representation in biology. Perspect Biol Med 52:485–499

    Article  PubMed  Google Scholar 

  • Braasch I, Peterson SM, Desvignes T, McCluskey BM, Batzel P, Postlethwait JH (2015) A new model army: emerging fish models to study the genomics of vertebrate evo-devo. J Exp Zool (Mol Dev Evol) 324:316–341

    Article  Google Scholar 

  • Brigandt I, Love AC (2012) Conceptualizing evolutionary novelty: moving beyond definitional debates. J Exp Zool (Mol Dev Evol) 318B:417–427

    Article  Google Scholar 

  • Burian RM (1993) How the choice of experimental organism matters: epistemological reflections on an aspect of biological practice. J Hist Biol 26:351–367

    Article  CAS  PubMed  Google Scholar 

  • Burton PM, Finnerty JR (2009) Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis. Dev Genes Evol 219:79–87

    Article  PubMed  Google Scholar 

  • Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376:479–485

    Article  CAS  PubMed  Google Scholar 

  • Castoe TA et al (2013) The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci USA 110:20645–20650

    Article  CAS  PubMed  Google Scholar 

  • Cheon D-J, Orsulic S (2011) Mouse models of cancer. Annu Rev Pathol Mech Dis 6:95–119

    Article  CAS  Google Scholar 

  • Cohn MJ, Tickle C (1999) Developmental basis of limblessness and axial patterning in snakes. Nature 399:474–479

    Article  CAS  PubMed  Google Scholar 

  • Collins JP, Gilbert SF, Laubichler MD, Müller GB (2007) Modeling in EvoDevo: how to integrate development, evolution, and ecology. In: Laubichler MD, Müller GB (eds) Modeling biology. MIT Press, Cambridge, MA, pp 355–378

    Google Scholar 

  • Crotty DA, Gann A (eds) (2009) Emerging model organisms: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Darling JA, Reitzel AR, Burton PM, Mazza ME, Ryan JF, Sullivan JC, Finnerty JR (2005) Rising starlet: the starlet sea anemone, Nematostella vectensis. BioEssays 27:211–221

    Article  CAS  PubMed  Google Scholar 

  • Davis GK, Patel NH (1999) The origin and evolution of segmentation. Trends Genet 9:M68–M72

    Article  CAS  Google Scholar 

  • de Beer GR (1985 [1937) The development of the vertebrate skull. University of Chicago Press, Chicago

    Google Scholar 

  • De Robertis EM (2008) Evo-devo: variations on ancestral themes. Cell 132:185–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ (2004) Origins of bilateral symmetry: Hox and Dpp expression in a sea anemone. Science 304:1335–1337

    Article  CAS  PubMed  Google Scholar 

  • Genikhovich G, Technau U (2009) The starlet sea anemone Nematostella vectensis: an anthozoan model organism for studies in comparative genomics and functional evolutionary developmental biology. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.emo129

    Google Scholar 

  • Gerhart J, Kirschner M (2007) The theory of facilitated variation. Proc Natl Acad Sci USA 104:8582–8589

    Article  CAS  PubMed  Google Scholar 

  • Gomez C, Özbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquié O (2008) Control of segment number in vertebrate embryos. Nature 454:335–339

    Article  CAS  PubMed  Google Scholar 

  • Griesemer JR (2015) What salamander biologists have taught us about evo-devo. In: Love AC (ed) Conceptual change in biology: scientific and philosophical perspectives on evolution and development. Springer, Dordrecht, pp 271–301

    Google Scholar 

  • Guerreiro I, Duboule D (2014) Snakes: hatching of a model system for evo-devo? Int J Dev Biol 58:727–732

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro I et al (2016) Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan. eLife 5:e16087

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanken J (1993) Model systems versus outgroups: alternative approaches to the study of head development and evolution. Am Zool 33:448–456

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • He S, del Viso F, Chen C-Y, Ikmi A, Kroesen AE, Gibson MC (2018) An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis. Science 361:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Head JJ, Polly PD (2015) Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature 520:86–89

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenner RA (2006) Unburdening evo-devo: ancestral attractions, model organisms, and basal baloney. Dev Genes Evol 216:385–394

    Article  PubMed  Google Scholar 

  • Jenner RA, Wills MA (2007) The choice of model organisms in evo-devo. Nat Rev Genet 8:311–319

    Article  CAS  PubMed  Google Scholar 

  • Kellogg EA, Shaffer HB (1993) Model organisms in evolutionary studies. Syst Biol 42:409–414

    Article  Google Scholar 

  • Krogh A (1929) The progress of physiology. Science 70:200–204

    Article  CAS  PubMed  Google Scholar 

  • Kuo D-H, Lai Y-T (2019) On the origin of leeches by evolution of development. Devel Growth Differ 61:43–57

    Article  Google Scholar 

  • Kusserow A et al (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Weisblat DA (2015) Leeches of the genus Helobdella as model organisms for evo-devo studies. Theory Biosci 134:93–104

    Article  PubMed  Google Scholar 

  • Kvon EZ et al (2016) Progressive loss of function in a limb enhancer during snake evolution. Cell 167:633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapraz F et al (2013) Put a tiger in your tank: the polyclad flatworm Maritigrella crozieri as a proposed model for evo-devo. EvoDevo 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Layden MJ, Rentzsch F, Röttinger E (2016) The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. Wiley Interdiscip Rev Dev Biol 5:408–428

    Article  PubMed  PubMed Central  Google Scholar 

  • Love AC (2008) Explaining evolutionary innovation and novelty: criteria of explanatory adequacy and epistemological prerequisites. Philos Sci 75:874–886

    Article  Google Scholar 

  • Love AC (2009) Marine invertebrates, model organisms, and the modern synthesis: epistemic values, evo-devo, and exclusion. Theory Biosci 128:19–42

    Article  PubMed  Google Scholar 

  • Love AC (2010) Idealization in evolutionary developmental investigation: a tension between phenotypic plasticity and normal stages. Philos Trans R Soc B Biol Sci 365:679–690

    Article  Google Scholar 

  • Love AC (2014) The erotetic organization of developmental biology. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford, pp 33–55

    Chapter  Google Scholar 

  • Love AC, Strathmann RR (2018) Marine invertebrate larvae: model life histories for development, ecology, and evolution. In: Carrier TJ, Reitzel AM, Heyland A (eds) Evolutionary ecology of marine invertebrate larvae. Oxford University Press, Oxford, pp 302–317

    Google Scholar 

  • Love AC, Travisano M (2013) Microbes modeling ontogeny. Biol Philos 28:161–188

    Article  Google Scholar 

  • Martindale MQ, Shankland M (1990) Intrinsic segmental identity of segmental founder cells of the leech embryo. Nature 347:672–674

    Article  CAS  PubMed  Google Scholar 

  • Matus DQ, Thomsen GH, Martindale MQ (2006) Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Curr Biol 16:499–505

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ (1984) A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37:403–408

    Article  CAS  PubMed  Google Scholar 

  • Medina Jiménez BI, Kwak H-J, Park J-S, Kim J-W, Cho S-J (2017) Developmental biology and potential use of Alboglossiphonia lata (Annelida: Hirudinea) as an “evo-devo” model organism. Front Zool 14:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metscher BD, Ahlberg PE (1999) Zebrafish in context: uses of a laboratory model in comparative studies. Dev Biol 210:1–14

    Article  CAS  PubMed  Google Scholar 

  • Milinkovitch M, Tzika A (2007) Escaping the mouse trap: the selection of new evo-devo species. J Exp Zool (Mol Dev Evol) 308B:337–346

    Article  Google Scholar 

  • Minelli A, Baedke J (2014) Model organisms in evo-devo: promises and pitfalls of the comparative approach. Hist Philos Life Sci 36:42–59

    Article  PubMed  Google Scholar 

  • Minelli A, Fusco G (2004) Evo-devo perspectives on segmentation: model organisms, and beyond. Trends Ecol Evol 19:423–429

    Article  PubMed  Google Scholar 

  • Moczek AP et al (2011) The role of developmental plasticity in evolutionary innovation. Proc R Soc Lond B Biol Sci 278:2705–2713

    Article  Google Scholar 

  • Petersen CP, Reddien PW (2009) Wnt signaling and the polarity of the primary body axis. Cell 139:1056–1068

    Article  CAS  PubMed  Google Scholar 

  • Plackett ARG, Di Stilio VS, Langdale JA (2015) Ferns: the missing link in shoot evolution and development. Front Plant Sci 6:972

    Article  PubMed  PubMed Central  Google Scholar 

  • Rentzsch F, Anton R, Saina M, Hammerschmidt M, Holstein TW, Technau U (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev Biol 296:375–387

    Article  CAS  PubMed  Google Scholar 

  • Röttinger E, Dahlin P, Martindale MQ (2012) A framework for the establishment of a cnidarian gene regulatory network for “endomesoderm” specification: the inputs of ß-catenin/TCF signaling. PLoS Genet 8:e1003164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell JJ et al (2017) Non-model model organisms. BMC Biol 15:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saina M, Genikhovich G, Renfer E, Technau U (2009) BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci USA 106:18592–18597

    Article  CAS  PubMed  Google Scholar 

  • Sanger TJ (2012) The emergence of squamates as model systems for integrative biology. Evol Dev 14:231–233

    Article  PubMed  Google Scholar 

  • Schulze J, Schierenberg E (2011) Evolution of embryonic development in nematodes. EvoDevo 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Slack JMW (2006) Essential developmental biology, 2nd edn. Blackwell, Malden, MA

    Google Scholar 

  • Sommer RJ (2009) The future of evo-devo: model systems and evolutionary theory. Nat Rev Genet 10:416–422

    Article  CAS  PubMed  Google Scholar 

  • Stroud JT, Losos JB (2016) Ecological opportunity and adaptive radiation. Annu Rev Ecol Evol Syst 47:507–532

    Article  Google Scholar 

  • ten Broek CMA, Bakker AJ, Varela-Lasheras I, Bugiani M, Van Dongen S, Galis F (2012) Evo-devo of the human vertebral column: on homeotic transformations, pathologies and prenatal selection. Evol Biol 39:456–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandenbussche M, Chambrier P, Rodrigues Bento S, Morel P (2016) Petunia, your next supermodel? Front Plant Sci 7:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Wake DB (2009) What salamanders have taught us about evolution. Annu Rev Ecol Evol Syst 40:333–352

    Article  Google Scholar 

  • Wake DB, Larson A (1987) Multidimensional analyses of an evolving lineage. Science 238:42–48

    Article  CAS  PubMed  Google Scholar 

  • Weisblat DA, Kuo D-H (2009) Helobdella (Leech): a model for developmental studies. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.emo121

    Google Scholar 

  • Weisblat DA, Kuo D-H (2014) Developmental biology of the leech Helobdella. Int J Dev Biol 58:429–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woltering JM (2012) From lizard to snake: behind the evolution of an extreme body plan. Curr Genomics 13:289–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woltering JM et al (2009) Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev Biol 332:82–89

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y-W (2019) Monkeyflowers (Mimulus): new model for plant developmental genetics and evo-devo. New Phytol 222:694–700

    Google Scholar 

  • Zuniga A (2015) Next generation limb development and evolution: old questions, new perspectives. Development 142:3810–3820

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Max Dresow, Nathan Lackey, Katherine Liu, and Aaron Vesey for feedback on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Love .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Love, A.C., Yoshida, Y. (2019). Reflections on Model Organisms in Evolutionary Developmental Biology. In: Tworzydlo, W., Bilinski, S. (eds) Evo-Devo: Non-model Species in Cell and Developmental Biology. Results and Problems in Cell Differentiation, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-23459-1_1

Download citation

Publish with us

Policies and ethics