Skip to main content

Controlled Release Herbicides and Allelopathy as Sustainable Alternatives in Crop Production

  • Chapter
  • First Online:
Controlled Release of Pesticides for Sustainable Agriculture

Abstract

Herbicides are specially designed chemicals to kill unwanted plants that adversely affect the crop growth and thereby increase the nutrient requirements. Directly applied herbicide residues finally accumulate in the soil. They are found in all environmental spheres including air, water, and soil. Most of the herbicide formulations contain active ingredients and additives so as to fulfill regulatory standards without affecting their effectiveness. Nevertheless, their excessive use leads to herbicide resistance in weed plants prompting increase in the dosages. Hence, many modified, controlled release systems with reduced hazards and environmental toxicity are developed. These methods minimize the environmental impacts and aid in the sustainable development. Also, plant derived bioformulations with weedicide activities are considered as environmentally safe alternatives. Allelochemicals are plant compounds which give a survival advantage to the producers. Allelopathy has an important role in weed control and crop productivity. Since the allelochemicals are biologically active compounds, they are less disruptive to the ecosystem than synthetic herbicides. Hence, controlled release of herbicides and allelopathy are discussed as sustainable alternatives in farming practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hay JR (1974) Gains to the grower from weed science. Weed Sci 22(5):439–442

    Article  Google Scholar 

  2. Yaduraju NT (2006) Herbicide resistant crops in weed management. In: The extended summaries, golden jubilee national symposium on conservation agriculture and environment. Banaras Hindu University Varanasi, pp 26–28

    Google Scholar 

  3. Vats S (2015) Herbicides: history, classification and genetic manipulation of plants for herbicide resistance. Sustainable agriculture reviews. Springer, Cham, pp 153–192

    Google Scholar 

  4. Bifani P (1987) Socio economic aspects of technological innovation in food production systems. Developments in Agricultural and Managed-Forest Ecology (Netherlands)

    Chapter  Google Scholar 

  5. Yadav A, Malik RK (2005) Herbicide resistant Phalaris minor in wheat–a sustainability issue. In: Resource book. Department of Agronomy and Directorate of Extension Education, CCSHAU, Hisar, India, 152

    Google Scholar 

  6. Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KH (2011) The role of allelopathy in agricultural pest management. Pest Manage Sci 67(5):493–506

    Article  CAS  Google Scholar 

  7. Sopena Vazquez F, Maqueda Porras C, Morillo Gonzalez E (2009) Controlled release formulations of herbicides based on micro-encapsulation. Ciencia e investigation agraria 36:27–42

    Google Scholar 

  8. Khalid S, Ahmad T, Shad RA (2002) Use of allelopathy in agriculture. Asian J Plant Sci 1(3):292–297

    Article  Google Scholar 

  9. Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1(1):7

    Google Scholar 

  10. Rao VS (2000) Principles of weed science. CRC Press, Florida

    Google Scholar 

  11. Berrada H, Font G, Molto JC (2003) Determination of urea pesticide residues in vegetable, soil, and water samples. Crit Rev Anal Chem 33(1):19–41

    Article  CAS  Google Scholar 

  12. Boparai HK, Shea PJ, Comfort SD, Snow DD (2006) Dechlorinating chloroacetanilide herbicides by dithionite-treated aquifer sediment and surface soil. Environ Sci Technol 40(9):3043–3049

    Article  CAS  Google Scholar 

  13. Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollution 141(3):555–570

    Article  CAS  Google Scholar 

  14. Ribeiro ML, Lourencetti C, Pereira SY, Marchi MRRD (2007) Groundwater contamination by pesticides: preliminary evaluation. Quim Nova 30(3):688–694

    Article  CAS  Google Scholar 

  15. Barr DB, Needham LL (2002) Analytical methods for biological monitoring of exposure to pesticides: a review. J Chromatogr B 778(1–2):5–29

    Article  CAS  Google Scholar 

  16. Albert LA (1998) Los plaguicidas persistentes y sus efectos a largo plazo. In II Simposio Internacional sobre agricultura sostenible, México DF

    Google Scholar 

  17. Kudsk P, Streibig JC (2003) Herbicides–a two-edged sword. Weed Res 43(2):90–102

    Article  CAS  Google Scholar 

  18. Graham JH, Myers ME (2016) Evaluation of soil applied systemic acquired resistance inducers integrated with copper bactericide sprays for control of citrus canker on bearing grapefruit trees. Crop Prot 90:157–162

    Article  CAS  Google Scholar 

  19. Papiernik SK, Yates SR, Koskinen WC, Barber B (2007) Processes affecting the dissipation of the herbicide isoxaflutole and its diketonitrile metabolite in agricultural soils under field conditions. J Agric Food Chem 55(21):8630–8639

    Article  CAS  Google Scholar 

  20. Shrader-Frechette K, ChoGlueck C (2017) Pesticides, neurodevelopmental disagreement, and Bradford Hill’s guidelines. Accountability Res 24(1):30–42

    Article  Google Scholar 

  21. Vitek P, Novotna K, Hodaňová P, Rapantova B, Klem K (2017) Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectrochim Acta Part A Mol Biomol Spectrosc 170:234–241

    Article  CAS  Google Scholar 

  22. Chi Y, Zhang G, Xiang Y, Cai D, Wu Z (2017) Fabrication of a temperature-controlled-release herbicide using a nanocomposite. ACS Sustain Chem Eng 5(6):4969–4975

    Article  CAS  Google Scholar 

  23. Devine MD, Eberlein CV (1997) Physiological, biochemical and molecular aspects of herbicide resistance based on altered target sites. Herbicide activity: toxicology, biochemistry and molecular biology. Springer, Berlin, pp 159–185

    Google Scholar 

  24. Devine MD, Preston C (2000) The molecular basis of herbicide resistance. 72–104; Cobb AH, RC Kirkwood. Herbicides and their mechanisms of action. England Sheffield Academic Press, Sheffield. (Google Scholar)

    Google Scholar 

  25. Preston C, Mallory-Smith CA, Powles SB, Shaner DL (2001) Biochemical mechanisms, inheritance, and molecular genetics of herbicide resistance in weeds. Herbicide resistance and world grains. CRC Press, Boca Raton, Florida, pp 23–60

    Chapter  Google Scholar 

  26. Smeda RJ, Vaughn KC (1997) Mechanisms of resistance to herbicides. Molecular mechanisms of resistance to agrochemicals. Springer, Berlin, Heidelberg, pp 79–123

    Chapter  Google Scholar 

  27. Hilton HW (1957) Herbicide tolerant strains of weeds. Hawaiian sugar planters association annual report. Hawaiian Sugar Planters Association, Honolulu, HI, pp 69–72

    Google Scholar 

  28. Le Baron HM, Gressel J (eds) (1982) Herbicide resistance in plants. Wiley, London

    Google Scholar 

  29. Ryan GF (1970) Resistance of common groundsel to simazine and atrazine. Weed Sci 18(5):614–616

    Article  CAS  Google Scholar 

  30. Radosevich SR, Appleby AP (1973) Relative susceptibility of two common groundsel (senecio vulgaris L.) biotypes to six s-triazines 1. Agron J 65(4):553–555

    Article  Google Scholar 

  31. Pline WA, Hatzios KK, Hagood ES (2000) Weed and herbicide-resistant soybean (Glycine max) response to glufosinate and glyphosate plus ammonium sulfate and pelargonic acid. Weed Technol 14(4):667–674

    Article  CAS  Google Scholar 

  32. Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance–different approaches through protein engineering. FEBS J 278(16):2753–2766

    Article  CAS  Google Scholar 

  33. Grillo R, Santo Pereira ADE, de Melo NFS, Porto RM, Feitosa LO, Tonello PS, … Fraceto LF (2011) Controlled release system for amteryn using polymer microspheres: preparation, characterization and release kinetics in water. J Hazard Mater 186(2–3): 1645–1651

    Article  CAS  Google Scholar 

  34. Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18(2):137–147

    Article  CAS  Google Scholar 

  35. Mulqueen P (2003) Recent advances in agrochemical formulation. Adv Coll Interface Sci 106(1–3):83–107

    Article  CAS  Google Scholar 

  36. Zabkiewicz JA (2000) Adjuvants and herbicidal efficacy-present status and future prospects. Weed Res Oxford 40(1):139–149

    Article  CAS  Google Scholar 

  37. Derr JF (1994) Innovative herbicide application methods and their potential for use in the nursery and landscape industries. Hort Technol 4(4):345–350

    Article  Google Scholar 

  38. Hagood ES, Swann CW, Wilson HP, Ritter RL, Webb FJ (1992) Weed control in forage crops. Pest management guide for field crops. Virginia Cooperative Extension, Serv Publication, pp 456–016

    Google Scholar 

  39. Smith AE, Verma BP (1977) Weed control in nursery stock by controlled release of alachlor. Weed Sci 25(2):175–178

    Article  CAS  Google Scholar 

  40. Verma BP, Smith AE (1978) Slow release herbicide tablets for container nursery. Trans ASAE 21(6):1054–1059

    Article  Google Scholar 

  41. Verma BP, Smith AE (1981) Dry-pressed slow release herbicide tablets. Trans ASAE 24(6): 1400–1403; Danielson LL (1967) Evaluation of herbicide-impregnated cloth. Weeds 15(1): 60–62

    Google Scholar 

  42. Koncal JJ, Gorske SF, Fretz TA (1981) Leaching of EPTC, alachlor, and metolachlor through a nursery medium as influenced by herbicide formulations. HortScience

    Google Scholar 

  43. Ruizzo MA, Smith EM, Gorske SF (1983) Evaluations of herbicides in slow-release formulations for container-grown landscape crops. J Am Soc Hortic Sci

    Google Scholar 

  44. Baur JR (1980) Release characteristics of starch xanthide herbicide formulations 1. J Environ Qual 9(3):379–382

    Article  CAS  Google Scholar 

  45. Raboy V, Hopen HJ (1982) Effectiveness of starch xanthide formulations of chloramben for weed control in pumpkin (Cucurbita moschata). Weed Sci 30(2):169–174

    Article  CAS  Google Scholar 

  46. Riggle BD, Penner D (1987) Evaluation of pine kraft lignins for controlled release of alachlor and metribuzin. Weed Sci 35(2):243–246

    Article  CAS  Google Scholar 

  47. Riggle BD, Penner D (1988) Controlled release of three herbicides by the kraft lignin PC940C. Weed Sci 36(2):131–136

    Article  CAS  Google Scholar 

  48. Schreiber MM, White MD, Wing RE, Trimnell D, Shasha BS (1988) Bioactivity of controlled release formulations of starch-encapsulated EPTC. J Controlled Release 7(3):237–242

    Article  CAS  Google Scholar 

  49. White MD, Schreiber MM (1984) Herbicidal activity of starch encapsulated trifluralin. Weed Sci 32(3):387–394

    Article  CAS  Google Scholar 

  50. Appleton B, Derr J (1990) A multiple chemical delivery system for container grown nursery stock, vol 35. In: Proceedings Southern Nurserymen’s association research conference, pp 68–70

    Google Scholar 

  51. Wells DW, Constantin RJ, Brown WL (1987) Weed control innovations for large, container grown ornamentals. In: Proceedings—southern weed science society 40: 137

    Google Scholar 

  52. Danielson LL (1967) Evaluation of herbicide-impregnated cloth. Weeds 15(1):60–62

    Article  CAS  Google Scholar 

  53. Hamill AS, Layne REC, Von Stryk FG (1975) Weed control in a fruit tree nursery with herbicide-impregnated string [Peaches, apricots]. HortScience (USA)

    Google Scholar 

  54. Lanphear FO (1968) Incorporation of dichlobenil in mulches. Weed Sci 16(2):230–231

    Article  CAS  Google Scholar 

  55. Vasilakoglou IB, Eleftherohorinos IG (2003) Persistence, efficacy, and selectivity of amide herbicides in corn. Weed Technol 17(2):381–388

    Article  CAS  Google Scholar 

  56. Gorski SF (1993) Slow-release delivery system for herbicides in container-grown stock. Weed Technol 7(4):894–899

    Article  Google Scholar 

  57. Johnson RM, Pepperman AB (1996) Leaching of alachlor from alginate-encapsulated controlled-release formulations. Pestic Sci 48(2):157–164

    Article  CAS  Google Scholar 

  58. Mullin CA, Fine JD, Reynolds RD, Frazier MT (2016) Toxicological risks of agrochemical spray adjuvants: organosilicone surfactants may not be safe. Frontiers Publ Health 4:92

    Article  Google Scholar 

  59. Kaiser H (2014) Stomatal uptake of mineral particles from a sprayed suspension containing an organosilicone surfactant. J Plant Nutr Soil Sci 177(6):869–874

    Article  CAS  Google Scholar 

  60. Xiang Y, Wang M, Sun X, Cai D, Wu Z (2014) Controlling pesticide loss through nanonetworks. ACS Sustain Chem Eng 2(4):918–924

    Article  CAS  Google Scholar 

  61. Wang M, Sun X, Zhong N, Cai D, Wu Z (2015) Promising approach for improving adhesion capacity of foliar nitrogen fertilizer. ACS Sustain Chem Eng 3(3):499–506

    Article  CAS  Google Scholar 

  62. Cai D, Wang L, Zhang G, Zhang X, Wu Z (2013) Controlling pesticide loss by natural porous micro/nano composites: straw ash-based biochar and biosilica. ACS Appl Mater Interfaces 5(18):9212–9216

    Article  CAS  Google Scholar 

  63. Rudzinski WE, Dave AM, Vaishnav UH, Kumbar SG, Kulkarni AR, Aminabhavi TM (2002) Hydrogels as controlled release devices in agriculture. Des Monomers Polym 5(1):39–65

    Article  CAS  Google Scholar 

  64. Remuñán-López C. y Alonso-Fernández MJ (1997) Microencapsulación de medicamentos. Tecnología farmacéutica. Formas farmacéuticas, 1, pp 577–609

    Google Scholar 

  65. Arshady R (eds). (1999a) Microspheres microcapsules & liposomes: preparation & chemical applications. Citus Books

    Google Scholar 

  66. Arshady R (1999b) Manufacturing methodology of microcapsules. MML SERIES, 1: 279

    Google Scholar 

  67. Faria DM, Junior D, Macias S, Nascimento JPLD, Nunes EDS, Marques RP, … Moreto JA (2017) Development and evaluation of a controlled release system of TBH herbicide using alginate microparticles. Mater Res 20(1): 225–235

    Article  CAS  Google Scholar 

  68. Zhu Z, Zhuo R (2001) Controlled release of carboxylic-containing herbicides by starch-g-poly (butyl acrylate). J Appl Polym Sci 81(6):1535–1543

    Article  CAS  Google Scholar 

  69. Shasha BS, Trimnell D, Otey FH (1984) Starch–borate complexes for EPTC encapsulation. J Appl Polym Sci 29(1):67–73

    Article  CAS  Google Scholar 

  70. Wing RE, Otey FH (1983) Determination of reaction variables for the starch xanthide encapsulation of pesticides. J Polym Sci Polym Chem Ed 21(1):121–140

    Article  CAS  Google Scholar 

  71. Wing RE, Shasha BS (1983) Encapsulation of organic chemicals within starch matrix: an undergraduate laboratory experiment. J Chem Educ 60(3):247

    Article  CAS  Google Scholar 

  72. Shasha BS, Trimnell D, Otey FH (1981) Encapsulation of pesticides in a starch- calcium adduct. J Polym Sci Polym Chem Ed 19(8):1891–1899

    Article  CAS  Google Scholar 

  73. Wing RE, Maiti S, Doane WM (1987) Factors affecting release of butylate from calcium ion-modified starch-borate matrices. J Controlled Release 5(1):79–89

    Article  CAS  Google Scholar 

  74. Trimnell D, Shasha BS, Wing RE, Otey FH (1982) Pesticide encapsulation using a starch–borate complex as wall material. J Appl Polym Sci 27(10):3919–3928

    Article  CAS  Google Scholar 

  75. Wing RE, Carr ME, Doane WM, Schreiber MM (1992) Starch encapsulated herbicide formulations: scale-up and laboratory evaluations. In: Pesticide formulations and application systems, vol 11. ASTM International, Pennsylvania

    Google Scholar 

  76. Trimnell D, Shasha BS (1988) Entrapment of herbicides in starch for spray applications. J Controlled Release 7(3):263–268

    Article  CAS  Google Scholar 

  77. Tefft J, Friend DR (1993) Controlled release herbicide formulations based on polymeric microspheres. J Controlled Release 27(1):27–35

    Article  CAS  Google Scholar 

  78. Campos EVR, de Oliveira JL, Fraceto LF (2014) Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Adv Sci Eng Med 6(4):373–387

    Article  CAS  Google Scholar 

  79. Junior SD, Nunes ES, Marques RP, Rossino LS, Quites FJ, Siqueira JR, Moreto JA (2017) Controlled release behavior of sulfentrazone herbicide encapsulated in Ca-ALG microparticles: preparation, characterization, mathematical modeling and release tests in field trial weed control. J Mater Sci 52(16):9491–9507

    Article  CAS  Google Scholar 

  80. Mehltretter CL, Roth WB, Weakley FB, McGuire TA, Russell CR (1974) Potential controlled-release herbicides from 2, 4-D esters of starches. Weed Sci 22(5):415–418

    Article  CAS  Google Scholar 

  81. Zhila N, Murueva A, Shershneva A, Shishatskaya E, Volova T (2017) Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds. J Environ Sci Health Part B 52(10):729–735

    Article  CAS  Google Scholar 

  82. Li J, Li Y, Dong H (2008) Controlled release of herbicide acetochlor from clay/carboxyl methylcellulose gel formulations. J Agric Food Chem 56(4):1336–1342

    Article  CAS  Google Scholar 

  83. Khanh TD, Chung IM, Tawata S, Xuan TD (2007) Allelopathy for weed management in sustainable agriculture. Health 1(2)

    Google Scholar 

  84. Zeng RS (2014) Allelopathy-the solution is indirect. J Chem Ecol 40(6):515

    Article  CAS  Google Scholar 

  85. Anonymous (1996) International allelopathy society. First World Congress on allelopathy: a science for future, Cadiz, Spain

    Google Scholar 

  86. Macias FA, Oliva RM, Simonet AM, Galindo JCG (1998) What are allelochemicals. In: Allelopathy in rice. Proceedings of the workshop on allelopathy in rice, 25–27 Nov 1996, pp 69–79

    Google Scholar 

  87. Macías FA, Marín D, Oliveros-Bastidas A, Varela RM, Simonet AM, Carrera C, Molinillo JM (2003) Allelopathy as a new strategy for sustainable ecosystems development. Biol Sci Space 17(1):18–23

    Article  Google Scholar 

  88. Duke SO (1986) Naturally occurring chemical compounds as herbicides. Rev Weed Sci 2:17–65

    Google Scholar 

  89. Kim KU (1993) Integrated management of paddy weeds in Korea, with an emphasis on allelopathy. Allelopathy in the control of paddy weeds. Technical Bulletin 134:8–23

    Google Scholar 

  90. Smith RJ (1993) Biological controls as components of integrated weed management for rice in the United States. ASPAC, Food & Fertilizer Technology Center

    Google Scholar 

  91. Breland TA (1996) Phytotoxic effects of fresh and decomposing cover crop residues. Norwegian J Agric Sci Norway 10:355–362

    Google Scholar 

  92. O’connell PF (1992) Sustainable agriculture-a valid alternative. Outlook Agric 21(1):5–12

    Article  Google Scholar 

  93. Anaya-Lang AL (1989) The role the allelochemicals in the management of natural resources. Botanical Sci 49:85–98

    Google Scholar 

  94. Duke SO, Lydon J (1987) Herbicides from natural compounds. Weed Technol 1(2):122–128

    Article  CAS  Google Scholar 

  95. Towers GHN, Arnason JT (1988) Photodynamic herbicides. Weed Technol 2(4):545–549

    Article  CAS  Google Scholar 

  96. Macias FA (1995) Allelopathy in the search for natural herbicide models

    Google Scholar 

  97. Nie C, Luo S, Zeng R, Mo M, Li H, Lin C (2005) Allelopathic potential of Wedelia trilobata L.: effects on germination, growth and physiological parameters of rice. In: 4th World Congress on allelopathy

    Google Scholar 

  98. Rensen Z, Xianglian L, Shiming L (1994) Studies on the allelopathic effects of Wedelia Chinensis aqueous extraction. J South China Agric Univ 4: 26–30

    Google Scholar 

  99. Luo SM, Lin XL, Zeng RS, Kong CH, Cao PR, Wei Q, Deng LG (1995) Allelopathy of typical plants in agroecosystem of South China. Ecol Sci 2:114–128

    Google Scholar 

  100. Laughlin RG, Munyon RL, Ries SK, Wert VF (1983) Growth enhancement of plants by femtomole doses of colloidally dispersed triacontanol. Science 219(4589):1219–1221

    Article  CAS  Google Scholar 

  101. Maugh TH (1981) The natural occurring brassionoide in the plant species. Science 212:33–34

    Article  Google Scholar 

  102. Rizvi SJH, Rizvi V (1992) Exploitation of allelochemicals in improving crop productivity. Allelopathy. Springer, Dordrecht, pp 443–472

    Chapter  Google Scholar 

  103. Worsham AD (1989) Current and potential technique using allelopathy as an aid in weed management. Phytochemical ecology: allelochemicals, mycotoxins, insect pheromones and allomones

    Google Scholar 

  104. Gleason FK (1990) The natural herbicide, Cyanobacterin, specifically disrupts thylakoid membrane structure in Euglena gracilis strain Z. FEMS Microbiol Lett 68(1–2):77–81

    Article  CAS  Google Scholar 

  105. Duke SO, Vaughn KC, Croom EM, Elsohly HN (1987) Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin. Weed Sci 35(4):499–505

    Article  CAS  Google Scholar 

  106. Einhellig FA (1996) Interactions involving allelopathy in cropping systems. Agron J 88(6):886–893

    Article  CAS  Google Scholar 

  107. Collins RL, Doglia S, Mazak RA, Samulski ET (1973) Controlled release of herbicides—theory. Weed Sci 21(1):1–5

    Article  CAS  Google Scholar 

  108. Einhellig FA (2018) Allelopathy—a natural protection, allelochemicals. Handbook of natural pesticides: methods. CRC Press, Boca Raton, FL, pp 161–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linu Mathew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahena, S., Rajan, M., Chandran, V., Mathew, L. (2020). Controlled Release Herbicides and Allelopathy as Sustainable Alternatives in Crop Production. In: K. R., R., Thomas, S., Volova, T., K., J. (eds) Controlled Release of Pesticides for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23396-9_10

Download citation

Publish with us

Policies and ethics