Skip to main content

Genetic Factors in Cannabinoid Use and Dependence

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1162))

Abstract

Cannabinoid use and dependence are heritable traits controlled in part by genetic factors. Despite a high incidence of use worldwide, genes that contribute to the risk of problematic use and dependence remain enigmatic. Here we review human candidate gene association studies, family-based linkage studies, and genome-wide association studies completed within the last two decades. These studies have expanded the list of candidate genes and intervals. However, there is little overlap between studies and generally low reproducibility in independent samples. Reasons for this lack of coherence vary but may depend on low sample size and statistical power, and the fact that most studies leverage populations ascertained for drug dependence other than cannabis. However, recent well-powered studies on lifetime cannabis use demonstrate that the genetic architecture of cannabis use resembles that of other substance use disorders and psychiatric disease in that many small effect genes contribute in an additive fashion. This finding suggests that increasing sample size and more focused recruitment of individuals based on cannabinoid use and dependence will identify more candidate genes. Follow-up of existing high priority candidates in preclinical model systems will facilitate better understanding of the genetic architecture and genetic risk factors for cannabis use and dependence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-AG:

2-arachidonoylglycerol

AA:

African American

AEA:

N-arachidonylethanolamide or anandamide

CADM2 :

cell adhesion molecule 2

CB1:

cannabinoid receptor type 1

CB2:

cannabinoid receptor type 2

CD:

cannabis dependence

CGAS:

candidate gene association studies

Chr:

chromosome

CNR1 :

gene encoding CB1

CUD:

cannabinoid use disorder

DAG:

1,2-diacylglycerol

DSM:

Diagnostic and Statistical Manual of Mental Disorders

EA:

European Americans

FAAH:

fatty acid amide hydrolase

FLS:

family-based linkage studies

GPCR:

G-protein coupled receptor

GTEx:

Genotype-Tissue Expression

GWAS:

genome-wide association studies

iPSYCH:

Initiative for Integrative Psychiatric Research

LD:

linkage disequilibrium

LOD:

logarithm of the odds

MGLL:

monoacylglycerol lipase

nAChR:

neuronal acetylcholine receptor

NAG:

Nicotine Addiction Genetics Program

NAPE-PLD:

N-acylphosphatidylethanolamine-specific phospholipase D

NCAM1 :

neural cell adhesion molecule 1

NRG1 :

neuregulin 1

PPAR:

peroxisome proliferator-act ivated receptor

SCOC:

short coiled-coil protein

SCOC-AS1 :

short coiled-coil protein anti-sense RNA 1

SNP:

single nucleotide polymorphism

THC:

Δ9-tetrahydrocannabinol

TRP:

transient receptor potential (ion channel)

References

  1. Agrawal A, Lynskey MT (2006) The genetic epidemiology of cannabis use, abuse and dependence. Addiction 101(6):801–812

    Article  Google Scholar 

  2. Kendler KS, Prescott CA (1998) Cannabis use, abuse, and dependence in a population-based sample of female twins. Am J Psychiatry 155(8):1016–1022

    Article  CAS  Google Scholar 

  3. American Psychiatric Association (2013) American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders: DSM-5. 5th edn. American Psychiatric Association, Washington, DC, xliv, 947 p

    Google Scholar 

  4. (UNODC) UNOoDaC (2010) World drug report 2010. United Nations, New York

    Google Scholar 

  5. Hasin DS, Kerridge BT, Saha TD, Huang B, Pickering R, Smith SM et al (2016) Prevalence and correlates of DSM-5 Cannabis use disorder, 2012–2013: findings from the National Epidemiologic Survey on alcohol and related conditions-III. Am J Psychiatry 173(6):588–599

    Article  Google Scholar 

  6. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA et al (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101(1):5–22

    Article  CAS  Google Scholar 

  7. Agrawal A, Wetherill L, Dick DM, Xuei X, Hinrichs A, Hesselbrock V et al (2009) Evidence for association between polymorphisms in the cannabinoid receptor 1 (CNR1) gene and cannabis dependence. Am J Med Genet B Neuropsychiatr Genet 150B(5):736–740

    Article  CAS  Google Scholar 

  8. Hopfer CJ, Young SE, Purcell S, Crowley TJ, Stallings MC, Corley RP et al (2006) Cannabis receptor haplotype associated with fewer cannabis dependence symptoms in adolescents. Am J Med Genet B Neuropsychiatr Genet 141B(8):895–901

    Article  CAS  Google Scholar 

  9. Chiang KP, Gerber AL, Sipe JC, Cravatt BF (2004) Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use. Hum Mol Genet 13(18):2113–2119

    Article  CAS  Google Scholar 

  10. Sipe JC, Chiang K, Gerber AL, Beutler E, Cravatt BF (2002) A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc Natl Acad Sci U S A 99(12):8394–8399

    Article  CAS  Google Scholar 

  11. Buhler KM, Gine E, Echeverry-Alzate V, Calleja-Conde J, de Fonseca FR, Lopez-Moreno JA (2015) Common single nucleotide variants underlying drug addiction: more than a decade of research. Addict Biol 20(5):845–871

    Article  Google Scholar 

  12. Tyndale RF, Payne JI, Gerber AL, Sipe JC (2007) The fatty acid amide hydrolase C385A (P129T) missense variant in cannabis users: studies of drug use and dependence in Caucasians. Am J Med Genet B Neuropsychiatr Genet 144B(5):660–666

    Article  CAS  Google Scholar 

  13. Haughey HM, Marshall E, Schacht JP, Louis A, Hutchison KE (2008) Marijuana withdrawal and craving: influence of the cannabinoid receptor 1 (CNR1) and fatty acid amide hydrolase (FAAH) genes. Addiction 103(10):1678–1686

    Article  Google Scholar 

  14. Schacht JP, Selling RE, Hutchison KE (2009) Intermediate cannabis dependence phenotypes and the FAAH C385A variant: an exploratory analysis. Psychopharmacology 203(3):511–517

    Article  CAS  Google Scholar 

  15. Verweij KJ, Zietsch BP, Liu JZ, Medland SE, Lynskey MT, Madden PA et al (2012) No association of candidate genes with cannabis use in a large sample of Australian twin families. Addict Biol 17(3):687–690

    Article  CAS  Google Scholar 

  16. Tawa EA, Hall SD, Lohoff FW (2016) Overview of the genetics of alcohol use disorder. Alcohol Alcohol 51(5):507–514

    Article  CAS  Google Scholar 

  17. Patton AL, Seely KA, Yarbrough AL, Fantegrossi W, James LP, McCain KR et al (2018) Altered metabolism of synthetic cannabinoid JWH-018 by human cytochrome P450 2C9 and variants. Biochem Biophys Res Commun 498(3):597–602

    Article  CAS  Google Scholar 

  18. Hopfer CJ, Lessem JM, Hartman CA, Stallings MC, Cherny SS, Corley RP et al (2007) A genome-wide scan for loci influencing adolescent cannabis dependence symptoms: evidence for linkage on chromosomes 3 and 9. Drug Alcohol Depend 89(1):34–41

    Article  CAS  Google Scholar 

  19. Stallings MC, Corley RP, Hewitt JK, Krauter KS, Lessem JM, Mikulich SK et al (2003) A genome-wide search for quantitative trait loci influencing substance dependence vulnerability in adolescence. Drug Alcohol Depend 70(3):295–307

    Article  Google Scholar 

  20. Agrawal A, Hinrichs AL, Dunn G, Bertelsen S, Dick DM, Saccone SF et al (2008) Linkage scan for quantitative traits identifies new regions of interest for substance dependence in the collaborative study on the genetics of alcoholism (COGA) sample. Drug Alcohol Depend 93(1–2):12–20

    Article  Google Scholar 

  21. Schuckit MA, Hesselbrock V, Tipp J, Anthenelli R, Bucholz K, Radziminski S (1994) A comparison of DSM-III-R, DSM-IV and ICD-10 substance use disorders diagnoses in 1922 men and women subjects in the COGA study. Collaborative Study on the Genetics of Alcoholism. Addiction 89(12):1629–1638

    Article  CAS  Google Scholar 

  22. Agrawal A, Pergadia ML, Saccone SF, Lynskey MT, Wang JC, Martin NG et al (2008) An autosomal linkage scan for cannabis use disorders in the nicotine addiction genetics project. Arch Gen Psychiatry 65(6):713–721

    Article  Google Scholar 

  23. Saccone SF, Pergadia ML, Loukola A, Broms U, Montgomery GW, Wang JC et al (2007) Genetic linkage to chromosome 22q12 for a heavy-smoking quantitative trait in two independent samples. Am J Hum Genet 80(5):856–866

    Article  CAS  Google Scholar 

  24. Agrawal A, Morley KI, Hansell NK, Pergadia ML, Montgomery GW, Statham DJ et al (2008) Autosomal linkage analysis for cannabis use behaviors in Australian adults. Drug Alcohol Depend 98(3):185–190

    Article  CAS  Google Scholar 

  25. Ehlers CL, Gizer IR, Vieten C, Wilhelmsen KC (2010) Linkage analyses of cannabis dependence, craving, and withdrawal in the San Francisco family study. Am J Med Genet B Neuropsychiatr Genet 153B(3):802–811

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Han S, Yang BZ, Kranzler HR, Oslin D, Anton R, Farrer LA et al (2012) Linkage analysis followed by association show NRG1 associated with cannabis dependence in African Americans. Biol Psychiatry 72(8):637–644

    Article  CAS  Google Scholar 

  27. Agrawal A, Lynskey MT, Hinrichs A, Grucza R, Saccone SF, Krueger R et al (2011) A genome-wide association study of DSM-IV cannabis dependence. Addict Biol 16(3):514–518

    Article  Google Scholar 

  28. Agrawal A, Chou YL, Carey CE, Baranger DAA, Zhang B, Sherva R et al (2018) Genome-wide association study identifies a novel locus for cannabis dependence. Mol Psychiatry 23(5):1293–1302

    Article  CAS  Google Scholar 

  29. Pasman JA, Verweij KJH, Gerring Z, Stringer S, Sanchez-Roige S, Treur JL et al (2018) GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nat Neurosci 21(9):1161–1170

    Article  CAS  Google Scholar 

  30. Minica CC, Verweij KJH, van der Most PJ, Mbarek H, Bernard M, van Eijk KR et al (2018) Genome-wide association meta-analysis of age at first cannabis use. Addiction 113(11):2073–2086

    Article  Google Scholar 

  31. Sherva R, Wang Q, Kranzler H, Zhao H, Koesterer R, Herman A et al (2016) Genome-wide association study of Cannabis dependence severity, novel risk variants, and shared genetic risks. JAMA Psychiat 73(5):472–480

    Article  Google Scholar 

  32. Stringer S, Minica CC, Verweij KJ, Mbarek H, Bernard M, Derringer J et al (2016) Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32 330 subjects from the International Cannabis Consortium. Transl Psychiatry 6:e769

    Article  CAS  Google Scholar 

  33. Verweij KJ, Vinkhuyzen AA, Benyamin B, Lynskey MT, Quaye L, Agrawal A et al (2013) The genetic aetiology of cannabis use initiation: a meta-analysis of genome-wide association studies and a SNP-based heritability estimation. Addict Biol 18(5):846–850

    Article  CAS  Google Scholar 

  34. Evangelou E, Ioannidis JP (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14(6):379–389

    Article  CAS  Google Scholar 

  35. King KM, Chassin L (2007) A prospective study of the effects of age of initiation of alcohol and drug use on young adult substance dependence. J Stud Alcohol Drugs 68(2):256–265

    Article  Google Scholar 

  36. Grant JD, Lynskey MT, Scherrer JF, Agrawal A, Heath AC, Bucholz KK (2010) A cotwin-control analysis of drug use and abuse/dependence risk associated with early-onset cannabis use. Addict Behav 35(1):35–41

    Article  Google Scholar 

  37. Chen CY, Storr CL, Anthony JC (2009) Early-onset drug use and risk for drug dependence problems. Addict Behav 34(3):319–322

    Article  CAS  Google Scholar 

  38. Kokkevi A, Nic Gabhainn S, Spyropoulou M (2006) Risk Behaviour Focus Group of the H. Early initiation of cannabis use: a cross-national European perspective. J Adolesc Health 39(5):712–719

    Article  Google Scholar 

  39. Demontis D, Rajagopal VM, Als TD, Grove J, Pallesen J, Hjorthøj C et al (2018) Genome-wide association study implicates CHRNA2 in cannabis use disorder. Preprint at bioRxiv

    Google Scholar 

  40. Gelernter J, Kranzler HR, Sherva R, Koesterer R, Almasy L, Zhao H et al (2014) Genome-wide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol Psychiatry 76(1):66–74

    Article  CAS  Google Scholar 

  41. Bierut LJ, Strickland JR, Thompson JR, Afful SE, Cottler LB (2008) Drug use and dependence in cocaine dependent subjects, community-based individuals, and their siblings. Drug Alcohol Depend 95(1–2):14–22

    Article  Google Scholar 

  42. Maloney E, Degenhardt L, Darke S, Mattick RP, Nelson E (2007) Suicidal behaviour and associated risk factors among opioid-dependent individuals: a case-control study. Addiction 102(12):1933–1941

    Article  Google Scholar 

  43. Kristjansson S, McCutcheon VV, Agrawal A, Lynskey MT, Conroy E, Statham DJ et al (2016) The variance shared across forms of childhood trauma is strongly associated with liability for psychiatric and substance use disorders. Brain Behav 6(2):e00432

    Article  Google Scholar 

  44. Pedersen CB, Bybjerg-Grauholm J, Pedersen MG, Grove J, Agerbo E, Baekvad-Hansen M et al (2018) The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol Psychiatry 23(1):6–14

    Article  CAS  Google Scholar 

  45. Consortium GT (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45(6):580–585

    Article  Google Scholar 

  46. Risbrough V, Ji B, Hauger R, Zhou X (2014) Generation and characterization of humanized mice carrying COMT158 Met/Val alleles. Neuropsychopharmacology 39(8):1823–1832

    Article  CAS  Google Scholar 

  47. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140

    Article  CAS  Google Scholar 

  48. Long LE, Chesworth R, Huang XF, McGregor IS, Arnold JC, Karl T (2013) Transmembrane domain Nrg1 mutant mice show altered susceptibility to the neurobehavioural actions of repeated THC exposure in adolescence. Int J Neuropsychopharmacol 16(1):163–175

    Article  CAS  Google Scholar 

  49. Boucher AA, Hunt GE, Micheau J, Huang X, McGregor IS, Karl T et al (2011) The schizophrenia susceptibility gene neuregulin 1 modulates tolerance to the effects of cannabinoids. Int J Neuropsychopharmacol 14(5):631–643

    Article  CAS  Google Scholar 

  50. Boucher AA, Hunt GE, Karl T, Micheau J, McGregor IS, Arnold JC (2007) Heterozygous neuregulin 1 mice display greater baseline and Delta(9)-tetrahydrocannabinol-induced c-Fos expression. Neuroscience 149(4):861–870

    Article  CAS  Google Scholar 

  51. Boucher AA, Arnold JC, Duffy L, Schofield PR, Micheau J, Karl T (2007) Heterozygous neuregulin 1 mice are more sensitive to the behavioural effects of Delta9-tetrahydrocannabinol. Psychopharmacology 192(3):325–336

    Article  CAS  Google Scholar 

  52. Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9(8):1956–1968

    Article  CAS  Google Scholar 

  53. Parker CC, Gopalakrishnan S, Carbonetto P, Gonzales NM, Leung E, Park YJ et al (2016) Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nat Genet 48(8):919–926

    Article  CAS  Google Scholar 

  54. Chesler EJ (2014) Out of the bottleneck: the diversity outcross and collaborative cross mouse populations in behavioral genetics research. Mamm Genome 25(1–2):3–11

    Article  Google Scholar 

  55. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J et al (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36(11):1133–1137

    Article  CAS  Google Scholar 

  56. Peirce JL, Lu L, Gu J, Silver LM, Williams RW (2004) A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 5:7

    Article  Google Scholar 

  57. Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6(4):271–286

    Article  CAS  Google Scholar 

  58. Kasten CR, Zhang Y, Mackie K, Boehm SL, 2nd. Short-term genetic selection for adolescent locomotor sensitivity to Delta9-tetrahydrocannabinol (THC). Behav Genet 2018;48(3):224–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan K. Mulligan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulligan, M.K. (2019). Genetic Factors in Cannabinoid Use and Dependence. In: Bukiya, A. (eds) Recent Advances in Cannabinoid Physiology and Pathology. Advances in Experimental Medicine and Biology, vol 1162. Springer, Cham. https://doi.org/10.1007/978-3-030-21737-2_7

Download citation

Publish with us

Policies and ethics