Skip to main content

Efficient Interpretation of Deep Learning Models Using Graph Structure and Cooperative Game Theory: Application to ASD Biomarker Discovery

  • Conference paper
  • First Online:
Book cover Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

Discovering imaging biomarkers for autism spectrum disorder (ASD) is critical to help explain ASD and predict or monitor treatment outcomes. Toward this end, deep learning classifiers have recently been used for identifying ASD from functional magnetic resonance imaging (fMRI) with higher accuracy than traditional learning strategies. However, a key challenge with deep learning models is understanding just what image features the network is using, which can in turn be used to define the biomarkers. Current methods extract biomarkers, i.e., important features, by looking at how the prediction changes if “ignoring” one feature at a time. However, this can lead to serious errors if the features are conditionally dependent. In this work, we go beyond looking at only individual features by using Shapley value explanation (SVE) from cooperative game theory. Cooperative game theory is advantageous here because it directly considers the interaction between features and can be applied to any machine learning method, making it a novel, more accurate way of determining instance-wise biomarker importance from deep learning models. A barrier to using SVE is its computational complexity: \(2^N\) given N features. We explicitly reduce the complexity of SVE computation by two approaches based on the underlying graph structure of the input data: (1) only consider the centralized coalition of each feature; (2) a hierarchical pipeline which first clusters features into small communities, then applies SVE in each community. Monte Carlo approximation can be used for large permutation sets. We first validate our methods on the MNIST dataset and compare to human perception. Next, to insure plausibility of our biomarker results, we train a Random Forest (RF) to classify ASD/control subjects from fMRI and compare SVE results to standard RF-based feature importance. Finally, we show initial results on ranked fMRI biomarkers using SVE on a deep learning classifier for the ASD/control dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldani, A.A.S., Downs, S.R., Widjaja, F., Lawton, B., Hendren, R.L.: Biomarkers in autism. Front. Psychiatry 5, 100 (2014)

    Article  Google Scholar 

  2. Li, X., Dvornek, N.C., Zhuang, J., Ventola, P., Duncan, J.S.: Brain biomarker interpretation in ASD using deep learning and fMRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 206–214. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_24

    Chapter  Google Scholar 

  3. Kaiser, M.D., et al.: Neural signatures of autism. Proc. Natl. Acad. Sci. 107(49), 21223–21228 (2010)

    Article  Google Scholar 

  4. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, pp. 4765–4774 (2017)

    Google Scholar 

  5. Chen, J., Song, L., Wainwright, M.J., Jordan, M.I.: L-shapley and C-shapley: efficient model interpretation for structured data. arXiv preprint arXiv:1808.02610 (2018)

  6. Kononenko, I., Strumbelj, E.: An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 11(Jan), 1–18 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317 (1953)

    MathSciNet  MATH  Google Scholar 

  8. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. arXiv preprint arXiv:1702.04595 (2017)

  9. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  11. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  12. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)

    Article  Google Scholar 

  13. Newman, M.: Networks. Oxford University Press, Oxford (2018)

    Book  Google Scholar 

  14. Li, X., et al.: 2-channel convolutional 3D deep neural network (2CC3D) for fMRI analysis: ASD classification and feature learning. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1252–1255. IEEE (2018)

    Google Scholar 

  15. Young, R.C., Biggs, J.T., Ziegler, V.E., Meyer, D.A.: A rating scale for mania: reliability, validity and sensitivity. Br. J. Psychiatry 133(5), 429–435 (1978)

    Article  Google Scholar 

  16. Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D.: Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8(8), 665 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiao Li .

Editor information

Editors and Affiliations

A Appendix: Proof of Theorem 2

A Appendix: Proof of Theorem 2

For any subset \(A\subset \mathcal {N}\), we use the short notation and , noting that \(A=U_{r}(A)\cup V_{r}(A)\). Rewriting Eq. (2) as

$$ \varPhi _{r}(v_{\varvec{X}})=\frac{1}{|\mathcal {N}|}\sum _{U\subseteq \mathcal {N}_{r}\setminus \{r\}}\sum _{A\subseteq \mathcal {N},U_{r}(A)=U}\left( \begin{array}{c} |\mathcal {N}|-1\\ |A| \end{array}\right) ^{-1}(v_{\varvec{X}}(A\cup \{r\})-v_{\varvec{X}}(A)), $$

and using

$$ \sum _{A\subseteq \mathcal {N},U_{r}(A)=U}\left( \begin{array}{c} |\mathcal {N}|-1\\ |A| \end{array}\right) ^{-1}=\frac{|\mathcal {N}|}{|\mathcal {N}_{r}|}\left( \begin{array}{c} |\mathcal {N}_{r}|-1\\ |U|-1 \end{array}\right) ^{-1}, $$

the expected error between \(\hat{\varPhi }_{r}^{C}(v_{\varvec{X}})\) and \(\varPhi _{r}(v_{\varvec{X}})\) is

$$ \mathbb {E}[\vert \hat{\varPhi }_{r}^{C}(v_{\varvec{X}})\ -\ \varPhi _{r}(v_{\varvec{X}})\vert ]\le \frac{1}{|\mathcal {N}|}\sum _{U\subseteq \mathcal {N}_{r}\setminus \{r\}}\sum _{A\subseteq \mathcal {N},U_{r}(A)=U}\left( \begin{array}{c} |\mathcal {N}|-1\\ |A| \end{array}\right) ^{-1}\mathbb {E}[\vert \varDelta _{r}^{{\varvec{X}}}(U,A)\vert ] $$

where

$$\begin{aligned} \varDelta _{r}^{{\varvec{X}}}(U,A)&=(v_{\varvec{X}}(U\cup \{r\})-v_{\varvec{X}}(U))-(v_{\varvec{X}}(A\cup \{r\})-v_{\varvec{X}}(A))\\&=\log \frac{p(Y\vert X_{\mathcal {N}\setminus U})}{p(Y\vert X_{\mathcal {N}\setminus (U\cup \{r\})})}-\log \frac{p(Y\vert X_{\mathcal {N}\setminus (U\cup V)})}{p(Y\vert X_{\mathcal {N}\setminus (U\cup V\cup \{r\}})}, \end{aligned}$$

with V short for \(V_{r}(A)\). Let \(W=\mathcal {N}\setminus (\mathcal {N}_{r}\cup V)\), \(Z=\mathcal {N}_{r}\setminus (\{r\}\cup U)\). Then

$$\begin{aligned} \varDelta _{r}^{{\varvec{X}}}(U,A)&=\log \frac{p(Y\vert X_{W\cup V\cup Z\cup \{r\}})p(Y\vert X_{W\cup Z})}{p(Y\vert X_{W\cup V\cup Z})p(Y\vert X_{W\cup Z\cup \{r\}})}. \end{aligned}$$
(9)

Since \(X_{r}\perp X_{V}\vert X_{Z}\), we have \(p(X_{V}\vert X_{W\cup Z\cup \{r\}})=p(X_{V}\vert X_{W\cup Z})\), and

$$ (\star )=\frac{p(X_{W\cup V\cup Z\cup \{r\}})p(X_{W\cup Z})}{p(X_{W\cup V\cup Z})p(X_{W\cup Z\cup \{r\}})}=\frac{p(X_{W\cup Z\cup \{r\}})p(X_{V}\vert X_{W\cup Z\cup \{r\}})p(X_{W\cup Z})}{p(X_{W\cup Z})p(X_{V}\vert X_{W\cup Z})p(X_{W\cup Z\cup \{r\}})}=1. $$

We can multiply the quotient in Eq. (9) by \((\star )\),

$$\begin{aligned} \varDelta _{r}^{{\varvec{X}}}(U,A)&=\log \frac{p(Y\vert X_{W\cup V\cup Z\cup \{r\}})p(Y\vert X_{W\cup Z})}{p(Y\vert X_{W\cup V\cup Z})p(Y\vert X_{W\cup Z\cup \{r\}})}\frac{p(X_{W\cup V\cup Z\cup \{r\}})p(X_{W\cup Z})}{p(X_{W\cup V\cup Z})p(X_{W\cup Z\cup \{r\}})}\\&=\log \frac{p(X_{W\cup V\cup \{r\}}\vert Y,X_{Z})p(Y,X_{Z})p(Y,X_{Z})p(X_{W}\vert Y,X_{Z})}{p(Y,X_{Z})p(X_{W\cup V}\vert Y,X_{Z})p(Y,X_{Z})p(X_{W\cup \{r\}}\vert Y,X_{Z})}. \end{aligned}$$

We have \(p(X_{W\cup V\cup \{r\}}\vert Y,X_{Z})=p(X_{W\cup V}\vert Y,X_{Z})p(X_{r}\vert Y,X_{Z})\), since \(X_{W\cup V}\perp X_{r}\vert Y,X_{Z}\). So

$$ \varDelta _{r}^{{\varvec{X}}}(U,A)=\log \frac{p(X_{W\cup V}\vert Y,X_{Z})p(X_{r}\vert Y,X_{Z})p(X_{W}\vert Y,X_{Z})}{p(X_{W\cup V}\vert Y,X_{Z})p(X_{W\cup \{r\}}\vert Y,X_{Z})}. $$

Since \(X_{W}\perp X_{r}\vert Y,X_{Z}\), we have \(p(X_{W\cup \{r\}}\vert Y,X_{Z})=p(X_{W}\vert Y,X_{Z})p(X_{r}\vert Y,X_{Z})\). Hence \(\varDelta _{r}^{{\varvec{X}}}(U,A)=\log 1=0\). Therefore we have \(\mathbb {E}[\vert \hat{\varPhi }_{r}^{C}(v_{\varvec{X}})-\varPhi _{r}(v_{\varvec{X}})\vert ]=0\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Dvornek, N.C., Zhou, Y., Zhuang, J., Ventola, P., Duncan, J.S. (2019). Efficient Interpretation of Deep Learning Models Using Graph Structure and Cooperative Game Theory: Application to ASD Biomarker Discovery. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics