Skip to main content

Prediction of Human Maximum Forces – A Comparison of Four Approaches to Calculate Muscle-Torque

  • Conference paper
  • First Online:
  • 2927 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 975))

Abstract

Analyses of human action forces is a standard function of current digital human models. However, research has been indicating that this feature needs to be improved as it lacks accuracy. Muscle-torque based modeling can be used to calculate action forces. Because it is not efficient to measure torques in all spatial directions, different calculating approaches have been developed. The question is which one is the best to calculate action forces? In this paper, we will therefor explain four different calculations - a spherical, linear, independent and fluid approach. To compare their quality, a study based on 366 measurements of maximum torques has been conducted. Results show that the spherical approach predicts maximum muscle torques to about 1.7% accuracy. The fluid approach increases the accuracy significantly (R2 0.9), but needs more input data. Hence, a mix using both approaches is proposed as the best solution to calculate action forces in digital human models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Muehlstedt, J.: Entwicklung eines Modells dynamisch-muskulaerer Arbeitsbeanspruchung auf Basis digitaler Menschmodelle. Chemnitz University of Technology (2012)

    Google Scholar 

  2. Spitzhirn, M., Kaiser, A., Bullinger, A.C.: Virtual aging. In: Bullinger, A.C. (ed.) 3D Sensation, pp. 236–251. Verlag aw&I Wissenschaft und Praxis, Chemnitz (2016)

    Google Scholar 

  3. Wischniewski, S.: Digitale Ergonomie 2025. In: BAuA (eds.) Forsch. Projekt F 2313 (2013)

    Google Scholar 

  4. Mital, A., Kumar, S.: Human muscle strength definitions, measurement and usage: Part I. Int. J. Ind. Ergon. 22, 101–121 (1998)

    Article  Google Scholar 

  5. Rohmert, W., Berg, K., Bruder, R., Schaub, K.H.: Kraefteatlas. In: BAuA (eds.) Schriftenreihe der BAuA (Fb 09.004). Wirtschaftsverlag NW, Bremerhaven (1994)

    Google Scholar 

  6. Guenzkofer, F.: Kraefte. In: Bubb, H., Bengler, K., Gruenen, R.E., Vollrath, M. (eds.) Automobilergonomie, pp. 199–208. Springer, Wiesbaden (2015)

    Google Scholar 

  7. Schultetus, W.: Montagegestaltung. In: Lange, W., Doerken, W. (eds.) Praxis der Ergonomie, vol. 2. Verlag TUEV Rheinland, Koeln (1987)

    Google Scholar 

  8. Kaiser, A., Spitzhirn, M., Bullinger, A.C.: Joint angle depending representation of maximum forces in digital human models. In: Schlick, C.M., et al. (eds.) Advances in Ergonomic Design of Systems, Products and Processes, pp. 349–366. Springer, Berlin (2017)

    Google Scholar 

  9. DIN EN 1005-3.: Sicherheit von Maschinen – Menschliche koerperliche Leistung. Teil 3: Empfohlene kraftgrenzen bei Maschinenbetaetigung. Beuth Verlag, Berlin (2009)

    Google Scholar 

  10. DIN 33411-5.: Maximale statische Aktionskraefte, Werte. Beuth Verlag, Berlin (1999)

    Google Scholar 

  11. DIN 33411-3.: Maximal erreichbare statische Aktionsmomente maennlicher Arbeitspersonen an Handraedern. Beuth Verlag, Berlin (1986)

    Google Scholar 

  12. Ruehmann, H.: Isometrische Stellungskraefte an Stellteilen und Betriebsmitteln. In: Schmidtke, H. (ed.) Ergonomie, vol. 3, pp. 485–492. Carl Hanser Verlag, Muenchen (1993)

    Google Scholar 

  13. Kaiser, A.: Modellierung maximaler menschlicher Muskelmomente auf Basis digitaler Menschmodelle – am Beispiel der oberen Extremitaeten. Chemnitz University of Technology (2017). http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-233826

  14. Wakula, J., Berg, K., Schaub, K.H., Bruder, R., Glitsch, U., Ellegast, R.: Der montagespezifische Kraftatlas. In: DGUV (eds.) BGIA-Report 03/2009 (2009)

    Google Scholar 

  15. Schoenherr, R.: Simulationsbasierte Absicherung der Ergonomie mit Hilfe digital beschriebener menschlicher Bewegungen. Chemnitz University of Technology (2013)

    Google Scholar 

  16. Kamusella, C., Scherstjanoi, E., Schmauder, M.: Ergotyping®-Tools fuer Ergonomieuntersuchungen. In: Bullinger, A.C., Muehlstedt, J. (eds.) Homo Sapiens Digitalis (2016)

    Google Scholar 

  17. DIN 33411-4: Maximale statische Aktionskraefte (Isodynen). Beuth Verlag, Berlin (1987)

    Google Scholar 

  18. Waters, T.R., Putz-Anderson, V., Garg, A., Fine, L.J.: Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 36(7), 749–776 (1993)

    Article  Google Scholar 

  19. Muehlstedt, J.: Digitale Menschmodelle. In: Bullinger, A.C., Muehlstedt, J. (eds.) Homo Sapiens Digitalis, pp. 72–182. Springer, Wiesbaden (2016)

    Google Scholar 

  20. Guenzkofer, F.: Elbow strength modelling for digital human models. Muenchen University of Technology, Verlag Dr. Hut., Muenchen (2013)

    Google Scholar 

  21. Chaffin, D.B., Andersson, G.B.J., Martin, B.J.: Occupational Biomechanics. Wiley, New York (2006)

    Google Scholar 

  22. Bober, T., Kulig, K., Burnfield, J.M., Pietraszewski, B.: Predictive torque equations for joints of the extremities. Acta Bioeng. Biomech. 4(2), 49–60 (2002)

    Google Scholar 

  23. Seitz, T., Recluta, D., Zimmermann, D., Wirsching, H.-J.: FOCOPP. In: Proceedings of the SAE DHMC (Digital Human Modeling Conference) (2005)

    Google Scholar 

  24. Schwarz, W.: 3D‐Video‐Belastungsanalyse: E. n. A. z. Kraft‐ u. Haltungsanalyse (1997)

    Google Scholar 

  25. Schaefer, P., Rudolph, H., Schwarz, W.: Digital man models and physical strength – a new approach in strength simulation (No. 2000-01-2168). SAE Technical paper (2000)

    Google Scholar 

  26. Guenzkofer, F.: Muskulatur. In: Bubb, H., Bengler, K., Gruenen, R.E., Vollrath, M. (eds.) Automobilergonomie, pp. 173–178. Springer, Wiesbaden (2015)

    Google Scholar 

  27. Schaefer, P., Rudolph, H., Schwarz, W.: Variable force limits for optional target populations. In: Proceedings of the 13th IEA Conference, Tampere, pp. 533–535 (1997)

    Google Scholar 

  28. Kajaks, T., Stephens, A., Potvin, J.R.: The effect of manikin anthropometrics and posturing guidelines. Int. J. Hum. Factors Model. Simul. 2(3), 236–253 (2011)

    Google Scholar 

  29. Chiang, J., Stephens, A., Potvin, J.: Retooling Jack’s static strength prediction tool (No. 2006-01-2350). SAE Technical paper (2006)

    Google Scholar 

  30. Clarke, H.H.: Muscular Strength and Endurance in Man. Prentice-Hall, Englewood Cliffs (1966)

    Google Scholar 

  31. Shippen, J., May, B.: BoB – biomechanics in MATLAB. BIOMDLORE. In: 11th International Conference. Druskininkai. VGTU Press, Lithuania (2016)

    Google Scholar 

  32. Stelzner, G.: Zur Modellierung und Simulation biomechanischer Mehrkoerpersysteme. Karlsruhe University, Universitaetsverlag, Karlsruhe (2009)

    Google Scholar 

  33. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. London B: Biol. Sci. 126(843), 136–195 (1938)

    Article  Google Scholar 

  34. Bernstein, N.A.: The Co-Ordination and Regulation of Movements. Pergamon, Oxford (1967)

    Google Scholar 

  35. Rasmussen, J., Damsgaard, M., Voigt, M.: Muscle recruitment by the min/max criterion—a comparative numerical study. J. Biomech. 34(3), 409–415 (2001)

    Article  Google Scholar 

  36. Rasmussen, J., Vondrak, V., Damsgaard, M., De Zee, M., Christensen, S.T., Dostal, Z.: The anybody project. Biomechanics of Man, pp. 270–274 (2002)

    Google Scholar 

  37. Delp, S.L., Loan, J.P.: A computational framework for simulating and analyzing human and animal movement. Comput. Sci. Eng. 2(5), 46–55 (2000)

    Article  Google Scholar 

  38. Liu, Y.S., Tsay, T.S., Chen, C.P., Pan, H.C.: Simulation of riding a full suspension bicycle for analyzing comfort and pedaling force. Procedia Eng. 60, 84–90 (2013)

    Article  Google Scholar 

  39. Abdel-Malek, K., Arora, J.: Physics-based digital human modeling. In: Duffy, V.G. (ed.) Handbook of Digital Human Modeling, pp. 5-1–5-33 (2008)

    Google Scholar 

  40. Engstler, F.: Perzentilierung maximaler Gelenkmomente des Menschen. Muenchen University of Technology, Verlag Dr. Hut., Muenchen (2012)

    Google Scholar 

  41. Hofmann, N., Kaiser, A., Hermsdorf, H., Moebius, D.: Methodik zur Messung und Berechnung maximaler Gelenkmomente. In: Bullinger, A. (ed.) Innovation der Innovation. Awi Conference, Chemnitz (2018). https://doi.org/10.14464/awic.v3i0.396

Download references

Acknowledgements

This research was partially supported by the German Federal Ministry of Education and Research (project VirMont). The sponsor had no role in the study design, the collection, analysis and interpretation of data, the writing of the report, or the submission of the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaiser, A., Bullinger, A.C. (2020). Prediction of Human Maximum Forces – A Comparison of Four Approaches to Calculate Muscle-Torque. In: Di Nicolantonio, M., Rossi, E., Alexander, T. (eds) Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping. AHFE 2019. Advances in Intelligent Systems and Computing, vol 975. Springer, Cham. https://doi.org/10.1007/978-3-030-20216-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20216-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20215-6

  • Online ISBN: 978-3-030-20216-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics