Skip to main content

Oscillatory Behaviour on a Non-autonomous Hybrid SIR-Model

  • Conference paper
  • First Online:
Molecular Logic and Computational Synthetic Biology (MLCSB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11415))

  • 322 Accesses

Abstract

We study the impact of some abstract agent intervention on the disease spread modelled by a SIR-model with linear growth infectivity. The intervention is meant to decrease the infectivity, which are activated by a threshold on the number of infected individuals. The coupled model is represented as a nonlinear non-autonomous hybrid system. Stability and reduction results are obtained using the notions of non-autonomous attractors, Bohl exponents, and dichotomy spectrum. Numerical examples are given where the number of infected individuals can oscillate around a equilibrium point or be a succession of bump functions, which are validated with a tool based on the notion of \(\delta \)-complete decision procedures for solving satisfiability modulo theories problems over the real numbers and bounded \(\delta \)-reachability. These findings seem to show that hybrid SIR-models are more flexible than standard models and generate a vast set of solution profiles. It also raises questions regarding the possibility of the agent intervention been somehow responsible for the shape and intensity of future outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adda, P., Bichara, D.: Global stability for SIR and SIRS models with differential mortality. Int. J. Pure Appl. Math. 80(3), 425–433 (2012)

    MATH  Google Scholar 

  2. Bacaër, N., Guernaoui, S.: The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53, 421–436 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bai, Z., Zhou, Y., Zhang, T.: Existence of multiple periodic solutions for an SIR model with seasonality. Nonlinear Anal. 74, 3548–3555 (2011)

    Article  MathSciNet  Google Scholar 

  4. Boatto, S., Bonnet, C., Cazelles, B., Mazenc, F.: SIR model with time dependent infectivity parameter: approximating the epidemic attractor and the importance of the initial phase. HAL preprint, pp. 1–30 (2018)

    Google Scholar 

  5. Bohl, P.: Über differentialgleichungen. J. für Reine und Angewandte Mathematik 144, 284–313 (1913)

    MATH  Google Scholar 

  6. Chueshov, I.: Monotone Random Systems Theory and Applications. LNM, vol. 1779. Springer, Heidelberg (2002). https://doi.org/10.1007/b83277

    Book  MATH  Google Scholar 

  7. Daleckii, J., Krein, M.: Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs, vol. 43. AMS, Providence (1974)

    Google Scholar 

  8. Evans, L.C.: An Introduction to Stochastic Differential Equations, vol. 82. American Mathematical Society, Providence (2012)

    Google Scholar 

  9. Gao, S., Kong, S., Chen, W., Clarke, E.: Delta-complete analysis for bounded reachability of hybrid systems. CoRR abs/1404.7171 (2014)

    Google Scholar 

  10. Henzinger, T.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems. NATO ASISeries F: Computer and Systems Sciences, vol. 170, pp. 265–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-5_13

    Chapter  Google Scholar 

  11. Kermack, W., McKendric, A.: A contribution to the mathematical theory of epidemics. Proc. Royal Soc. Lond. A Math. Phys. Eng. Sci. 772(115), 700–721 (1927)

    Article  Google Scholar 

  12. Kloeden, P.E., Pötzsche, C.: Nonautonomous bifurcation scenarios in SIR models. Math. Methods Appl. Sci. 38(16), 3495–3518 (2015). https://doi.org/10.1002/mma.3433

    Article  MathSciNet  MATH  Google Scholar 

  13. Kloeden, P., Kozyakin, V.: The dynamics of epidemiological systems with nonautonomous and random coefficients. MESA 2(2), 159–172 (2011)

    MATH  Google Scholar 

  14. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  15. Kong, S., Solar-Lezama, A., Gao, S.: Delta-decision procedures for exists-forall problems over the reals. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 219–235. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2_15

    Chapter  Google Scholar 

  16. Kuniya, T.: Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients. Appl. Math. Lett. 27, 15–20 (2014)

    Article  MathSciNet  Google Scholar 

  17. Lyapunov, A.: The General Problem of the Stability of Motion. Ann. Math. Studies, vol. 17. Taylor and Francis, Princeton (1949). English reprint (edn.)

    Google Scholar 

  18. Ponciano, J., Capistán, M.: First principles modeling of nonlinear incidence rates in seasonal epidemics. PLOS Comput. Biol. 7(2), E1001079 (2011)

    Article  MathSciNet  Google Scholar 

  19. Potzsche, C.: Nonautonomous bifurcation of bounded solutions ii: a shovel bifurcation pattern. Discrete Contin. Dyn. Syst. (Ser. A) 31(1), 941–973 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Raskin, J.: An introduction to hybrid automata. In: Hristu-Varsakelis, D., Levine, W.S. (eds.) Handbook of Networked and Embedded Control Systems. Control Engineering. Birkhäuser, Boston (2005)

    Google Scholar 

  21. Rocha, E., Silva, C., Torres, D.: The effect of immigrant communities coming from higher incidence tuberculosis regions to a host country. Ricerche di Matematica 67(1), 89–112 (2018)

    Article  MathSciNet  Google Scholar 

  22. Sacker, R., Sell, G.: A spectral theory for linear differential systems. J. Differ. Eqn. 27, 320–358 (1978)

    Article  MathSciNet  Google Scholar 

  23. Wang, W., Zhao, X.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Diff. Eqn. 20, 699–717 (2008)

    Article  MathSciNet  Google Scholar 

  24. Wu, H., Li, W.: Poincaré type theorems for non-autonomous systems. J. Differ. Eqn. 245, 2958–2978 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partial supported by Portuguese funds through the FCT project “DALI – Dynamic logics for cyber-physical systems: towards contract based design” with reference P2020-PTDC/EEI-CTP/4836/2014; the Center for Research and Development in Mathematics and Applications (CIDMA) and the Portuguese Foundation for Science and Technology (FCT), within project UID/MAT/04106/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugénio M. Rocha .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof

(Lemma 1) Let \(h=y-x\) for \(x,y\in \varSigma _1\). Recall that the mean value inequality, for a vector value function \(F:\mathbb {R}\times \varSigma _1\rightarrow \mathbb {R}^3\), says that when the Jacobian matrix of F at \(w=x+\tau h\), i.e. \(J_F(w)\), is uniformly bounded by some constant \(L>0\) for any \(\tau \in \) [0,1] and \(t\in \mathbb {R}\), then

$$ | F(t,x+h)-F(t,x)|\le L\,|h|.$$

Hence, the function F in Eq. (2.3) is locally Lipschitz continuous in the second variable since

$$\begin{aligned} J_F(w(t))= \left( \begin{array}{ccc} -\alpha -\beta _\xi (t) w_2(t) &{} \zeta -\beta _\xi (t) w_1(t) &{} 0\\ \beta _\xi (t) w_2(t) &{} \beta _\xi (t) w_1(t)-(\zeta +\alpha +\gamma ) &{} 0\\ 0 &{} \gamma &{} -\alpha \end{array}\right) \end{aligned}$$

is uniformly bounded, because \(\beta _\xi (t)\in [\beta _*,\beta ^*]\) and w(t) is bounded for any \(\tau \in \) [0,1], by definition. So, the Picard-Lindelöf theorem ensures the existence and uniqueness of solution in each node of the hybrid system. Its not difficult to see that the solution is globally defined. Further, the hybrid system Fig. 2 is deterministic and has only one jump condition in each node, so we conclude the proof.

Proof

(Lemma 4) First note that

$$\begin{aligned} I^*(t)^{-1}&=\int _{-\infty }^t \beta _\xi (r)\varphi (t,r)^{-1}\,dr =\hat{\varphi }(t)^{-1}\lim _{a\rightarrow +\infty }\int _{-a}^t \beta _\xi (r)\hat{\varphi }(r)dr\\&=\hat{\varphi }(t)^{-1}\int _{0}^t \beta _\xi (r)\hat{\varphi }(r)dr +\hat{\varphi }(t)^{-1}\lim _{a\rightarrow +\infty }\int _{-a}^0 \beta _\xi (r)\hat{\varphi }(r)dr \end{aligned}$$

with \(t\in [0,\mathcal {T}]\). We consider two cases: (a) \(\xi =0\); and (b) \(\xi \ge 0\).

(a) For \(\xi =0\), i.e. when \(\beta _\xi (t)\equiv \beta _0\) is constant and \(\hat{\varphi }(r)= e^{\xi _0r}\), we have

$$\begin{aligned} I^*(t)^{-1}&=\beta _0e^{-\xi _0t}\int _{0}^t e^{\xi _0r}dr+\beta _0e^{-\xi _0t}\lim _{a\rightarrow +\infty }\int _{-a}^0 e^{\xi _0r}dr\\&=\frac{\beta _0}{\xi _0}\left( 1-\lim _{a\rightarrow +\infty }e^{-\xi _0 a}\right) . \end{aligned}$$

From which, we obtain: (i) for \(\xi _0\le 0\), then \((S^*(t),I^*(t))=(1,0)\); and (b) for \(\xi _0>0\), we recover the expected values

$$\begin{aligned} I^*(t)=(\beta _0-\alpha -\zeta )\beta _0^{-1}\quad \hbox { and }\quad S^*(t)=(\alpha +\zeta )\beta _0^{-1}. \end{aligned}$$
(18)

(b) In general, for \(\xi \ne 0\) and \(t\in \overline{\mathcal {T}}_{t_0}\), using (12) and integration by parts, we have

$$\begin{aligned} I^*(t)^{-1}\hat{\varphi }(t)&=\int _{0}^t (\beta _0+\xi r)e^{\xi _0r+\frac{1}{2}\xi r^2}dr+\beta _0\lim _{a\rightarrow +\infty } \int _{-a}^0 e^{\xi _0r}dr\\&=\int _{0}^t (\beta _0+\xi r)e^{\xi _0r+\frac{1}{2}\xi r^2}dr+\lim _{a\rightarrow +\infty }\frac{\beta _0}{\xi _0}\left( 1-e^{-\xi _0 a}\right) \\&=\hat{\varphi }(t)-1-(\alpha +\zeta )G(t)+\lim _{a\rightarrow +\infty }\frac{\beta _0}{\xi _0}\left( 1-e^{-\xi _0 a}\right) . \end{aligned}$$

Therefore, we obtain: (i) for \(\xi _0\le 0\), then \((S^*(t),I^*(t))=(1,0)\); and (ii) for \(\xi _0>0\), we get

$$\begin{aligned} I^*(t)=\frac{\beta _0-\alpha -\zeta }{\xi _0+\beta _0\hat{\varphi }(t)^{-1}-\xi _0[1+(\alpha +\zeta )G(t)]\hat{\varphi }(t)^{-1}}\quad \hbox { and}\quad S^*(t)=1-I^*(t). \end{aligned}$$
(19)

In particular, when \(\xi \rightarrow 0\), \(G(t)\rightarrow (1-\hat{\varphi }(t))\xi _0^{-1}\) so we recover the values (18).

To prove the stability result, assume \(\xi _0>\max \{0,-\xi \mathcal {T}\}\). This means that \(\beta _*>\alpha +\zeta \). For any solution I(t), \(D=I(t)-I^*(t)\) satisfy

$$ D'(t)=(\beta _\xi (t)-\alpha -\zeta )D(t)\ge (\beta _*-\alpha -\zeta )D(t) \quad \Rightarrow \,\,\, D'(t)^2\le D(0)^2\, e^{-2|\beta _*-\alpha -\zeta |t}, $$

so \(D(t)\rightarrow 0\) and \(I(t)-I^*(t)\rightarrow 0\) as \(t\rightarrow +\infty \). Because \(|S(t)-S^*(t)|=|1-I(t)-(1-I^*(t))|=|I^*(t)-I(t)|\), we have the desired conclusion.

Proof

(Lemma 5) Recall \(\beta _\xi (t)\in [\beta _*,\beta ^*]\) for \(t\in \mathbb {R}\). We consider three cases: (A) \(\beta ^*<\alpha +\zeta \), (B) \(\beta ^*=\alpha +\zeta \), and (C) \(\beta _*>\alpha +\zeta \). (A) Using the second equation of (10) and \(0\le S\le 1\), we obtain \((I^2)' = 2I\,I' =2\left( \beta _\xi S-\alpha -\zeta \right) I^2\le 2\left( \beta ^*-\alpha -\zeta \right) I^2\) which implies that \(I(t)^2\le I(0)^2 e^{-2|\beta ^*-\alpha -\zeta |t}\) as \(t\rightarrow +\infty ,\) meaning that \(E_0\) is (asymptotically) stable. (B) Consider Eq. (11), so for all \(I>0\), we have \(I'= (\beta _\xi -\alpha -\zeta )I-\beta _\xi I^2 = -\beta _\xi I^2< -\frac{\beta _\xi }{\beta _*} I^2<0\) and \(0\le I(t) \le \lim _{t\rightarrow +\infty }\frac{\beta _*I(0)}{\beta _*+\beta _\xi I(0)t}.\) Thus, \(S(t)-S^*(t)=S(t)-1=-I(t)\rightarrow 0\) as \(t\rightarrow +\infty \). Hence, \(E_0\) is (asymptotically) stable. (C) Suppose \(I(t)\le \epsilon \in \) [0,1], so \(S(t)\ge 1-\epsilon \). Then

$$S' \le \left[ \alpha +\zeta -\beta _\xi (1-\epsilon )\right] I \quad \hbox { and }\quad I' \ge \left[ \beta _*(1-\epsilon )-\alpha -\zeta \right] I,$$

so I is strictly increasing if \(0<I(t)\le \epsilon \) and \(\epsilon < 1-(\alpha +\zeta )\beta _*^{-1}\). In particular, for any solution if \((S(t),I(t))\rightarrow (1,0)\) then we have that I(t) is strictly increasing (i.e. a contradiction), so \(E_0\) is unstable.

Proof

(Lemma 6) Recall that \(\beta _0>\max \{0,-\xi \mathcal {T}\}\), \(\beta _*=\min \{\beta _0,\beta _0+\xi \mathcal {T}\}\) and \(\beta ^*=\max \{\beta _0,\beta _0+\xi \mathcal {T}\}\). So, by direct computation, we get

$$\max \{\beta _0,\beta _0+\xi \mathcal {T}\}\le \alpha +\zeta \,\Leftrightarrow \, \max \{0,\xi \mathcal {T}\}\le -\xi _0 \,\Leftrightarrow \, \xi _0 \le \min \{0,-\xi \mathcal {T}\},$$
$$\min \left\{ \beta _0,\beta _0+\xi \mathcal {T}\right\}>\alpha +\zeta \,\Leftrightarrow \, \min \left\{ 0,\xi \mathcal {T}\right\}>-\xi _0 \,\Leftrightarrow \, \xi _0>\max \left\{ 0,-\xi \mathcal {T}\right\} ,$$

for which Lemma 5 implies that \(E_0\) is globally asymptotically stable w.r.t. \(\varSigma _0\), when \( \xi _0 \le \min \{0,-\xi \mathcal {T}\}\), and unstable when \( \xi _0>\max \left\{ 0,-\xi \mathcal {T}\right\} \). The statements in this lemma are then a direct consequence of \(\mathcal {T}\ge 0\) and \(\beta _-<0<\beta _+\).

Proof

(Lemma 8) First, suppose the system (10) is defined on \(t\in J\subseteq \mathbb {R}\). By applying Lemma 7, we conclude that the linear part of (10) has the dichotomy spectrum \(-(\alpha +\zeta )+[\underline{\beta }_{J}(\beta _\xi ),\overline{\beta }_{J}(\beta _\xi )]\). Hence, by propositions 4.9 and 4.10 in [19], Lemma 5 is still valid when we replace globally asymptotically stable by uniformly asymptotically stable and \(\beta _*,\beta ^*\) by \(\underline{\beta }_{J}(\beta _\xi ),\overline{\beta }_{J}(\beta _\xi )\), respectively. This tell us that it is expect to occur a bifurcation of (10) when \(\underline{\beta }_{J}(\beta _\xi )=\overline{\beta }_{J}(\beta _\xi )=\alpha +\zeta \).

We have \(\underline{\beta }_{\overline{\mathcal {T}}_{0}}(\beta _\xi )=\overline{\beta }_{\overline{\mathcal {T}}_{0}}(\beta _\xi )=\beta _0+\frac{1}{2}\xi \mathcal {T}\). In fact, note that \(\beta _\xi \) is a integrable bounded function in \(\overline{\mathcal {T}}_{0}\). For \(s,t \in \overline{\mathcal {T}}_{0}\) and \(w\in \mathbb {R}\), let

$$\begin{aligned}&F(s,t,w) = \frac{1}{t-s}\int _s^t \beta _\xi (r)-w\,dr = \beta _0+\frac{1}{2}\xi (t+s) -w,\\&\sup _{s\le t, (s,t)\in [0,\mathcal {T}]^2} F(s,t,w) =\sup _{t\le s, (s,t)\in [0,\mathcal {T}]^2} F(s,t,w)= \beta _0+\frac{1}{2}\xi \mathcal {T} -w. \end{aligned}$$

Hence, \(\underline{\beta }_{\overline{\mathcal {T}}_{0}}(\beta _\xi )=\overline{\beta }_{\overline{\mathcal {T}}_{0}}(\beta _\xi )=\beta _0+\frac{1}{2}\xi \mathcal {T}\). So, replacing the obtained values in \(\overline{\beta }_{\overline{\mathcal {T}}_{0}}(\beta _\xi )\le \alpha +\zeta \), \(\underline{\beta }_{\overline{\mathcal {T}}_{0}}(\beta _\xi )>\alpha +\zeta \) and recalling that \(\xi _0=\beta _0-\alpha -\zeta \), we simplify to

$$\beta _0+\frac{1}{2}\xi \mathcal {T}\le \alpha +\zeta \,\Leftrightarrow \, \xi _0 \le -\frac{1}{2}\xi \mathcal {T} \,\hbox { and }\,\beta _0+\frac{1}{2}\xi \mathcal {T}>\alpha +\zeta \,\Leftrightarrow \, \xi _0>-\frac{1}{2}\xi \mathcal {T},$$

which confirms the above bifurcation point of (10).

By Lemma 7, we have that \(\underline{\beta }_{\mathbb {R}}(\beta _\xi )=\min \{\beta _0,\beta _0+\xi \mathcal {T}\}\) and \(\overline{\beta }_{\mathbb {R}}(\beta _\xi )=\max \{\beta _0,\beta _0+\xi \mathcal {T}\}\). In the same way, for \(t\in \mathbb {R}\), we have

$$\max \{\beta _0,\beta _0+\xi \mathcal {T}\}\le \alpha +\zeta \,\Leftrightarrow \, \xi _0 \le \min \{0,-\xi \mathcal {T}\},$$
$$\min \{\beta _0,\beta _0+\xi \mathcal {T}\}>\alpha +\zeta \,\Leftrightarrow \, \xi _0>\max \{0,-\xi \mathcal {T}\},$$

The statement in the lemma is a consequence of \(\mathcal {T}\ge 0\) and \(\beta _-<0<\beta _+\).

Proof

(Lemma 9) Let \(v_1=\psi _I(0)\) and \(v_2=\psi _R(0)\). The functions \(\psi _I, \psi _R\) are continuous so there exist \(T>0\) such that their signs are preserved in [0, T], so from (14) they prescribe the monotonicity of S(t), I(t), R(t) in \(t\in [0,T]\). Now, it is enough to explicitly construct the map \((v_1,v_2)\mapsto (S(0), I(0), R(0))\) as

$$ S(0) = \frac{v_1+q}{\beta _0},\,\, I(0) = -\frac{\alpha (-\beta _0+v_1+q)}{\beta _0 (\alpha +\gamma -v_2)},$$
$$ R(0) = -\frac{\gamma ^2+(v_1-\beta _0-v_2+\alpha +\zeta )\gamma +v_2(\beta _0- v_1-\alpha -\zeta )}{\beta _0(\alpha +\gamma -v_2)}, $$

where \(q=\alpha +\zeta +\gamma \), \(\beta _0=\beta _\xi (0)\) and \(v_1\in (-q, -q+\beta _0)\), \(v_2\in (\gamma ,\gamma +\alpha )\) (which ensure \(0<S(0),I(0),R(0)<1\)).

Proof

(Lemma 11) Consider the (reduced) system (17). The dichotomy spectrum (of the linear part) is

$$\varSigma _A=[-\alpha ,-\alpha ]\cup [\underline{\beta }_{\overline{\mathcal {T}}}(\beta _\xi )-\alpha -\zeta -\gamma ,\overline{\beta }_{\overline{\mathcal {T}}}(\beta _\xi )-\alpha -\zeta -\gamma ].$$

Recall \(\underline{\beta }_{\overline{\mathcal {T}}_{0}}(\beta _\xi )=\overline{\beta }_{\overline{\mathcal {T}}_{0}}(\beta _\xi )=\beta _0+\frac{1}{2}\xi \mathcal {T}\), First, suppose \(\xi _0>-\alpha -\frac{1}{2}\xi \mathcal {T}\) so we have the (ordered) dichotomy spectrum

$$\varSigma _A=[-\alpha ,-\alpha ]\cup \left[ \xi _0+\frac{1}{2}\xi \mathcal {T},\xi _0+\frac{1}{2}\xi \mathcal {T}\right] $$

and \(a_1b_2 = -\alpha \left( \xi _0+\frac{1}{2}\xi \mathcal {T}\right) >0\), meaning it is a system of type-I. Since \(a_i=b_i\), we also have that, for \(m\in \mathbb {N}^2\), to be of type-II is the same as

$$\begin{aligned}&0\not \in \left\{ -\alpha m_1 + \left( \xi _0+\frac{1}{2}\xi \mathcal {T}\right) m_2+\alpha , -\alpha m_1 + \left( \xi _0+\frac{1}{2}\xi \mathcal {T}\right) m_2-\xi _0-\frac{1}{2}\xi \mathcal {T}\right\} , \end{aligned}$$

Which is true, since the inclusion \(a m_1 +b m_2 \in \{a,b\}\) with \(a=\alpha \), \(b=\left| \xi _0+\frac{1}{2}\xi \mathcal {T}\right| \), do not have integer solutions. Hence, it is of type-II. If we suppose \(\xi _0<-\alpha -\frac{1}{2}\xi \mathcal {T}\) so we have the (ordered) dichotomy spectrum

$$\varSigma _A=\left[ \xi _0+\frac{1}{2}\xi \mathcal {T},\xi _0+\frac{1}{2}\xi \mathcal {T}\right] \cup [-\alpha ,-\alpha ],$$

the conclusions are the same.

Then system (17) is locally analytically equivalent to its linear part \(w'=A(t)w\), by applying Lemma 10. From (16), there exists a matrix Q(t), with determinant \(\gamma ^{-1}\beta _\xi ^{-1}(\beta _\xi -\zeta -\gamma )(\zeta +\gamma )\), such that \(w=Q(t) x\), so \(x'=Q^{-1}(t)A(t)Q(t)x\) and then applying the Jordan canonical form transformation \(x=Bv\), i.e.

$$ x'= \left( \begin{array}{ccc} 0 &{} 0 &{} 0\\ 0 &{} \xi _0+\xi t &{} 0\\ 0 &{} -\gamma (\zeta +\gamma )^{-1}(\alpha +\xi _0+\xi t) &{} -\alpha \end{array}\right) x \quad \hbox { and }\quad B = \left( \begin{array}{ccc} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 1\\ 0 &{} \frac{\gamma }{\zeta +\gamma } &{} -\frac{\gamma }{\zeta +\gamma } \end{array}\right) , $$

gives the expected result.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rocha, E.M. (2019). Oscillatory Behaviour on a Non-autonomous Hybrid SIR-Model. In: Chaves, M., Martins, M. (eds) Molecular Logic and Computational Synthetic Biology. MLCSB 2018. Lecture Notes in Computer Science(), vol 11415. Springer, Cham. https://doi.org/10.1007/978-3-030-19432-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19432-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19431-4

  • Online ISBN: 978-3-030-19432-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics