Skip to main content

Learning MILP Resolution Outcomes Before Reaching Time-Limit

  • Conference paper
  • First Online:
Book cover Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

The resolution of some Mixed-Integer Linear Programming (MILP) problems still presents challenges for state-of-the-art optimization solvers and may require hours of computations, so that a time-limit to the resolution process is typically provided by a user. Nevertheless, it could be useful to get a sense of the optimization trends after only a fraction of the specified total time has passed, and ideally be able to tailor the use of the remaining resolution time accordingly, in a more strategic and flexible way. Looking at the evolution of a partial branch-and-bound tree for a MILP instance, developed up to a certain fraction of the time-limit, we aim to predict whether the problem will be solved to proven optimality before timing out. We exploit machine learning tools, and summarize the development and progress of a MILP resolution process to cast a prediction within a classification framework. Experiments on benchmark instances show that a valuable statistical pattern can indeed be learned during MILP resolution, with key predictive features reflecting the know-how and experience of field’s practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achterberg, T., Berthold, T., Hendel, G.: Rounding and propagation heuristics for mixed integer programming. In: Klatte, D., Lüthi, H.J., Schmedders, K. (eds.) Operations Research Proceedings 2011, pp. 71–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29210-1_12

    Chapter  Google Scholar 

  2. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38189-8_18

    Chapter  MATH  Google Scholar 

  3. Belov, G., Esler, S., Fernando, D., Bodic, P.L., Nemhauser, G.L.: Estimating the size of search trees by sampling with domain knowledge. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 473–479 (2017). https://doi.org/10.24963/ijcai.2017/67

  4. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon (2018). Preprint: arXiv:1811.06128

  5. Berthold, T., Hendel, G., Koch, T.: From feasibility to improvement to proof: three phases of solving mixed-integer programs. Optim. Methods Softw. 33(3), 499–517 (2017). https://doi.org/10.1080/10556788.2017.1392519

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonami, P., Lodi, A., Zarpellon, G.: Learning a classification of mixed-integer quadratic programming problems. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 595–604. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_43

    Chapter  MATH  Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  8. Cornuéjols, G., Karamanov, M., Li, Y.: Early estimates of the size of branch-and-bound trees. INFORMS J. Comput. 18(1), 86–96 (2006). https://doi.org/10.1287/ijoc.1040.0107

    Article  MathSciNet  MATH  Google Scholar 

  9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1023/A:1022627411411

    Article  MATH  Google Scholar 

  10. CPLEX. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html. Accessed 2018

  11. Deshpande, M., Karypis, G.: Evaluation of techniques for classifying biological sequences. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 417–431. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47887-6_41

    Chapter  Google Scholar 

  12. Fischetti, M., Fraccaro, M.: Using OR + AI to predict the optimal production of offshore wind parks: a preliminary study. In: Sforza, A., Sterle, C. (eds.) Optimization and Decision Science: Methodologies and Applications. Springer Proceedings in Mathematics & Statistics, vol. 217, pp. 203–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67308-0_21

    Chapter  Google Scholar 

  13. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

    Article  MATH  Google Scholar 

  14. Gomory, R.: An algorithm for the mixed integer problem. Technical report RM-2597, The Rand Corporation (1960)

    Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_23

    Chapter  Google Scholar 

  17. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: methods & evaluation. Artif. Intell. 206, 79–111 (2014). https://doi.org/10.1016/j.artint.2013.10.003

    Article  MathSciNet  MATH  Google Scholar 

  18. Khalil, E.B., Dilkina, B., Nemhauser, G., Ahmed, S., Shao, Y.: Learning to run heuristics in tree search. In: 26th International Joint Conference on Artificial Intelligence (IJCAI) (2017)

    Google Scholar 

  19. Klotz, E., Newman, A.M.: Practical guidelines for solving difficult mixed integer linear programs. Surv. Oper. Res. Manag. Sci. 18(1), 18–32 (2013)

    MathSciNet  Google Scholar 

  20. Knuth, D.E.: Estimating the efficiency of backtrack programs. Math. Comput. 29(129), 122–136 (1975)

    Article  MathSciNet  Google Scholar 

  21. Koch, T., et al.: MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011). https://doi.org/10.1007/s12532-011-0025-9

    Article  MathSciNet  Google Scholar 

  22. Kruber, M., Lübbecke, M.E., Parmentier, A.: Learning when to use a decomposition. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 202–210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_16

    Chapter  Google Scholar 

  23. Land, A., Doig, A.: An automatic method of solving discrete programming problems. Econometrica 28, 497–520 (1960)

    Article  MathSciNet  Google Scholar 

  24. Lane, T., Brodley, C.E.: Temporal sequence learning and data reduction for anomaly detection. ACM Trans. Inf. Syst. Secur. 2(3), 295–331 (1999). https://doi.org/10.1145/322510.322526

    Article  Google Scholar 

  25. Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., Lodi, A.: Predicting solution summaries to integer linear programs under imperfect information with machine learning (2018). Preprint: arXiv:1807.11876

  26. Lodi, A.: Mixed integer programming computation. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958–2008, pp. 619–645. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-68279-0_16

    Chapter  Google Scholar 

  27. Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming, Chap. 1, pp. 1–12. INFORMS (2013). https://doi.org/10.1287/educ.2013.0112

  28. Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236 (2017). https://doi.org/10.1007/s11750-017-0451-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Louppe, G.: Understanding random forests: from theory to practice. Ph.D. thesis, October 2014. https://doi.org/10.13140/2.1.1570.5928

  30. Mittelmann, H.D.: MILPlib (2018). http://plato.asu.edu/ftp/milp/. Accessed 2018

  31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002). https://doi.org/10.1145/505282.505283

    Article  Google Scholar 

  33. Xing, Z., Pei, J., Keogh, E.: A brief survey on sequence classification. ACM SIGKDD Explor. Newsl. 12(1), 40–48 (2010). https://doi.org/10.1145/1882471.1882478

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Zarpellon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fischetti, M., Lodi, A., Zarpellon, G. (2019). Learning MILP Resolution Outcomes Before Reaching Time-Limit. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics