Skip to main content

Classification of Hyper Spectral Remote Sensing Imagery Using Intrinsic Parameter Estimation

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2018 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 941))

Abstract

A Hyperspectral remote sensing image (HSI) composed of various intrinsic components such as shading, albedo, noise and continuous narrow bands in different wavelengths. The classification of the HSI image is one of the challenging tasks in the area of Remote Sensing as it has numerous applications on environment, mineral exploration, target detection and anomaly detection. The present paper identifies a novel approach in classifying the image by incorporating the albedo intrinsic component retrieved from the image on principal components and factor analysis obtained through the dimensionality reduction. The obtained results are classified via Support Vector Machine classifier. The proposed algorithm tested on the benchmark datasets available worldwide such as Indian Pines, University of Pavia and Salinas. The extraction of albedo intrinsic components helps in effective classification of HSI image and outperforms the results with state of the art techniques, achieved the overall accuracy (OA) on these datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. State of the forest report 2013: Forest Survey of India, Ministry of Environment and Forests, Government of India, Dehradun (2013)

    Google Scholar 

  2. Olmanson, L.G., Brezonik, P.L., Bauer, M.E.: Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: the Mississippi River and its tributaries in Minnesota. Remote Sens. Environ. 130, 254–265 (2013)

    Article  Google Scholar 

  3. Zarco-Tejada, P.J., Berjón, A., López-Lozano, R., Miller, J.R., Martín, P., Cachorro, V., González, M.R., de Frutos, A.: Assessing vineyard condition with hyperspectral indices: leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 99, 271–287 (2005)

    Article  Google Scholar 

  4. Pascucci, S., Belviso, C., Cavalli, R.M., Laneve, G., Misurovic, A., Perrino, C., Pignatti, S.: Red mud soil contamination near an urban settlement analyzed by airborne hyperspectral remote sensing. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2009), pp. IV-893, IV-896, 12–17 July 2009 (2009)

    Google Scholar 

  5. Vaddi, R., Prabukumar, M.: Comparative study of feature extraction techniques for hyper spectral remote sensing image classification: a survey. In: International Conference on Intelligent Computing and Control Systems, 15–16 June 2017. Vaigai College Engineering (VCE), Madurai, India (2017)

    Google Scholar 

  6. Barrow, H., Tenenbaum, J.: Computer Vision Systems: Recovering Intrinsic Scene Characteristics from Images. Academic Press, New York (1978)

    Google Scholar 

  7. Zhan, K., Wang, H., Xie, Y., Zhang, C., Min, Y.: Albedo recovery for hyperspectral image classification. J. Electron. Imaging 26(4), 043010 (2017). https://doi.org/10.1117/1.JEI.26.4.043010

    Article  Google Scholar 

  8. Chutia, D., Bhattacharyya, D.K., Sarma, K.K., Kalita, R., Sudhakar, S.: Hyperspectral remote sensing Classifications: a perspective survey. Trans. GIS 20(4), 463–490 (2016)

    Article  Google Scholar 

  9. Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory IT-14(1), 55–63 (1968)

    Article  Google Scholar 

  10. Raczko, E., Zagajewski, B.: Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 50(1), 144–154 (2017)

    Article  Google Scholar 

  11. Nandhini, K., Porkodi, R.: Spatial classification and prediction in hyperspectral remote sensing data using random forest by tuning parameters. Int. J. Adv. Res. Comput. Sci. 8(3), 259–266 (2017)

    Google Scholar 

  12. Tagliabue, G., et al.: Forest species mapping using airborne hyperspectral APEX data. Misc. Geogr. – Reg. Stud. Dev. 20(1), 28–33 (2016)

    Google Scholar 

  13. Richter, R., et al.: The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area. Int. J. Appl. Earth Obs. Geoinf. 52, 464–474 (2016)

    Article  Google Scholar 

  14. Sheeren, D., et al.: Tree species classification in temperate forests using Formosat-2 satellite image time series. Remote Sens. 8, 1–29 (2016)

    Article  Google Scholar 

  15. Zhang, Z., et al.: Object-based tree species classification in urban ecosystems using LiDAR and hyperspectral data. Forests 7(6), 1–16 (2016)

    Google Scholar 

  16. Rummel, J.R.: Applied factor analysis. Library of congress catalog, card no, pp. 73–78327, United States of America (1988)

    Google Scholar 

  17. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30(4), 69:1–69:12 (2011)

    Article  Google Scholar 

  18. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev.: Comput. Stat. (2010). https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  19. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  20. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  21. Kumar, C.A.: Analysis of unsupervised dimensionality reduction techniques. Comput. Sci. Inf. Syst. 6(2), 217–227 (2009)

    Article  Google Scholar 

  22. Prabukumar, M., Sawant, S., Samiappan, S., Agilandeeswari, L.: Three-dimensional discrete cosine transform-based feature extraction for hyperspectral image classification. J. Appl. Remote Sens. 12(4), 046010 (2018)

    Google Scholar 

  23. Prabukumar, M., Shrutika, S.: Band clustering using expectation–maximization algorithm and weighted average fusion-based feature extraction for hyperspectral image classification. J. Appl. Remote Sens. 12(4), 046015 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabukumar Manoharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boggavarapu, L.N.P., Manoharan, P. (2020). Classification of Hyper Spectral Remote Sensing Imagery Using Intrinsic Parameter Estimation. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_83

Download citation

Publish with us

Policies and ethics