Skip to main content

Investigation of Antibody-Drug Conjugates by Mass Spectrometry

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1140))

Abstract

ADCs are empowered monoclonal antibodies that are designed to harness their targeting ability by linking them to cell-killing agents. They are made up of three main components, the antibody, linker and the cytotoxic drug. The specificity of the antibody with the antigen on the tumor cell surface helps with its internalization into the cell after which the active drug is released causing cell death. The investigation of ADCs can be done using a variety of MS methods. Here, we talk about the bottom-up approach, the top-down approaches such as ECD and ETD, the ESI/MS method and IM-MS. Further, we also focus on the applications of MALDI/MS such as UV-MALDI, IR-MALDI and IMS-MALDI and provide examples of the mass spectra that provide tremendous amount of information on ADC structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Antibody-drug conjugates

ALCL:

Anaplastic large cell lymphoma

CDRs:

Complementary determining regions

DAR:

Drug to antibody ratio

ECD:

Electron capture dissociation

ESI:

Electrospray ionization

ETD:

Electron transfer dissociation

HL:

Hodgkin’s lymphoma

IM:

Ion mobility

mAbs:

Monoclonal antibodies

MALDI:

Matrix assisted laser desorption ionization

MMAE:

Monomethyl auristatin E

MS:

Mass spectrometry

PTM:

Posttranslational modification

SCLC:

Small cell lung carcinoma

TDCs:

THIOMAB drug conjugates

TOF:

Time of flight

References

  1. Gorovits, B., et al. (2013). Bioanalysis of antibody-drug conjugates: American Association of Pharmaceutical Scientists Antibody-Drug Conjugate Working Group position paper. Bioanalysis, 5(9), 997–1006.

    CAS  PubMed  Google Scholar 

  2. Diamantis, N., & Banerji, U. (2016). Antibody-drug conjugates--An emerging class of cancer treatment. British Journal of Cancer, 114(4), 362–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Glennie, M. J., & van de Winkel, J. G. (2003). Renaissance of cancer therapeutic antibodies. Drug Discovery Today, 8(11), 503–510.

    CAS  PubMed  Google Scholar 

  4. Shefet-Carasso, L., & Benhar, I. (2015). Antibody-targeted drugs and drug resistance—Challenges and solutions. Drug Resistance Updates, 18, 36–46.

    PubMed  Google Scholar 

  5. Adair, J. R., et al. (2012). Antibody–drug conjugates – A perfect synergy. Expert Opinion on Biological Therapy, 12(9), 1191–1206.

    CAS  PubMed  Google Scholar 

  6. Chari, R. V. J. (2008). Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Accounts of Chemical Research, 41(1), 98–107.

    CAS  PubMed  Google Scholar 

  7. Flygare, J. A., Pillow, T. H., & Aristoff, P. (2013). Antibody-drug conjugates for the treatment of cancer. Chemical Biology & Drug Design, 81(1), 113–121.

    CAS  Google Scholar 

  8. Erickson, H. K., et al. (2010). Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody–maytansinoid conjugates. Bioconjugate Chemistry, 21(1), 84–92.

    CAS  PubMed  Google Scholar 

  9. Kigawa, J., et al. (1998). Glutathione concentration may be a useful predictor of response to second-line chemotherapy in patients with ovarian cancer. Cancer, 82(4), 697–702.

    CAS  PubMed  Google Scholar 

  10. Sanderson, R. J., et al. (2005). In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clinical Cancer Research, 11(2 Pt 1), 843–852.

    CAS  PubMed  Google Scholar 

  11. Doronina, S. O., et al. (2006). Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjugate Chemistry, 17(1), 114–124.

    CAS  PubMed  Google Scholar 

  12. Wang, L., et al. (2005). Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Science, 14(9), 2436–2446.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamblett, K. J., et al. (2004). Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clinical Cancer Research, 10(20), 7063–7070.

    CAS  PubMed  Google Scholar 

  14. Su, D., et al. (2018). Modulating antibody-drug conjugate payload metabolism by conjugation site and linker modification. Bioconjugate Chemistry, 29(4), 1155–1167.

    CAS  PubMed  Google Scholar 

  15. Dan, N., et al. (2018). Antibody-drug conjugates for cancer therapy: Chemistry to clinical implications. Pharmaceuticals (Basel, Switzerland), 11(2), 32.

    Google Scholar 

  16. Parslow, C. A., et al. (2016). Antibody–drug conjugates for cancer therapy. Biomedicine, 4(3), E14.

    Google Scholar 

  17. Ansell, S. M. (2014). Brentuximab vedotin. Blood, 124(22), 3197.

    CAS  PubMed  Google Scholar 

  18. Mir, S. S., Richter, B. W. M., & Duckett, C. S. (2000). Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells. Blood, 96(13), 4307.

    CAS  PubMed  Google Scholar 

  19. Wahl, A. F., et al. (2002). The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease. Cancer Research, 62(13), 3736.

    CAS  PubMed  Google Scholar 

  20. Okeley, N. M., et al. (2010). Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clinical Cancer Research, 16(3), 888.

    CAS  PubMed  Google Scholar 

  21. Sawaki, M. (2014). Trastuzumab emtansine in the treatment of HER2-positive metastatic breast cancer in Japanese patients. Breast Cancer, 6, 37–41.

    PubMed  Google Scholar 

  22. Hudis, C. A. (2007). Trastuzumab--Mechanism of action and use in clinical practice. The New England Journal of Medicine, 357(1), 39–51.

    CAS  PubMed  Google Scholar 

  23. Burris, H. A., et al. (2011). Trastuzumab emtansine (T-DM1): A novel agent for targeting HER2+ breast cancer. Clinical Breast Cancer, 11(5), 275–282.

    CAS  PubMed  Google Scholar 

  24. Sadeghi, S., Olevsky, O., & Hurvitz, S. A. (2014). Profiling and targeting HER2-positive breast cancer using trastuzumab emtansine. Pharmacogenomics and Personalized Medicine, 7, 329–338.

    PubMed  PubMed Central  Google Scholar 

  25. Corrigan, P. A., et al. (2014). Ado-trastuzumab emtansine: A HER2-positive targeted antibody-drug conjugate. The Annals of Pharmacotherapy, 48(11), 1484–1493.

    CAS  PubMed  Google Scholar 

  26. Barok, M., Joensuu, H., & Isola, J. (2014). Trastuzumab emtansine: Mechanisms of action and drug resistance. Breast Cancer Research, 16(2), 209.

    PubMed  Google Scholar 

  27. Rowe, J. M., & Löwenberg, B. (2013). Gemtuzumab ozogamicin in acute myeloid leukemia: A remarkable saga about an active drug. Blood, 121(24), 4838.

    CAS  PubMed  Google Scholar 

  28. Baron, J., & Wang, E. S. (2018). Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Review of Clinical Pharmacology, 11(6), 549–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Breccia, M., & Lo-Coco, F. (2011). Gemtuzumab ozogamicin for the treatment of acute promyelocytic leukemia: Mechanisms of action and resistance, safety and efficacy. Expert Opinion on Biological Therapy, 11(2), 225–234.

    CAS  PubMed  Google Scholar 

  30. de Witte, T., & Amadori, S. (2016). The optimal dosing of gemtuzumab ozagamicin: Where to go from here? Haematologica, 101(6), 653–654.

    PubMed  PubMed Central  Google Scholar 

  31. Jager, E., et al. (2011). Targeted drug delivery by gemtuzumab ozogamicin: Mechanism-based mathematical model for treatment strategy improvement and therapy individualization. PLoS One, 6(9), e24265–e24265.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, R. Y. C., & Chen, G. (2016). Characterization of antibody–drug conjugates by mass spectrometry: Advances and future trends. Drug Discovery Today, 21(5), 850–855.

    CAS  PubMed  Google Scholar 

  33. Wakankar, A., et al. (2011). Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs, 3(2), 161–172.

    PubMed  PubMed Central  Google Scholar 

  34. Wagner-Rousset, E., et al. (2014). Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. MAbs, 6(1), 173–184.

    PubMed  Google Scholar 

  35. Xu, K., et al. (2011). Characterization of intact antibody–drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography–mass spectrometry. Analytical Biochemistry, 412(1), 56–66.

    CAS  PubMed  Google Scholar 

  36. Chen, G., et al. (2011). Characterization of protein therapeutics by mass spectrometry: Recent developments and future directions. Drug Discovery Today, 16(1), 58–64.

    CAS  PubMed  Google Scholar 

  37. Hunt, D. F., et al. (1986). Protein sequencing by tandem mass spectrometry. Proceedings of the National Academy of Sciences, 83(17), 6233.

    CAS  Google Scholar 

  38. Ge, Y., et al. (2002). Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. Journal of the American Chemical Society, 124(4), 672–678.

    CAS  PubMed  Google Scholar 

  39. Syka, J. E. P., et al. (2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9528.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cournoyer, J. J., et al. (2005). Deamidation: Differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation. Protein Science, 14(2), 452–463.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. O’Connor, P. B., et al. (2006). Differentiation of Aspartic and Isoaspartic Acids Using Electron Transfer Dissociation. Journal of the American Society for Mass Spectrometry, 17(1), 15–19.

    PubMed  Google Scholar 

  42. Hardouin, J. (2007). Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Mass Spectrometry Reviews, 26(5), 672–682.

    CAS  PubMed  Google Scholar 

  43. Takayama, M. (2001). In-source decay characteristics of peptides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry, 12(4), 420–427.

    CAS  PubMed  Google Scholar 

  44. Veronese, F. M., & Pasut, G. (2005). PEGylation, successful approach to drug delivery. Drug Discovery Today, 10(21), 1451–1458.

    CAS  PubMed  Google Scholar 

  45. Siegel, M. M., et al. (1997). Calicheamicin derivatives conjugated to monoclonal antibodies: Determination of loading values and distributions by infrared and UV matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization mass spectrometry. Analytical Chemistry, 69(14), 2716–2726.

    CAS  PubMed  Google Scholar 

  46. Wang, L., et al. (2005). Structural characterization of a recombinant monoclonal antibody by electrospray time-of-flight mass spectrometry. Pharmaceutical Research, 22(8), 1338–1349.

    CAS  PubMed  Google Scholar 

  47. Quiles, S., et al. (2010). Synthesis and preliminary biological evaluation of high-drug-load paclitaxel-antibody conjugates for tumor-targeted chemotherapy. Journal of Medicinal Chemistry, 53(2), 586–594.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the past and current lab members for creating a pleasant working environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costel C. Darie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayathirtha, M., Darie, C.C. (2019). Investigation of Antibody-Drug Conjugates by Mass Spectrometry. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_14

Download citation

Publish with us

Policies and ethics