Skip to main content

Ovarian Cancer Stem Cell Heterogeneity

  • Chapter
  • First Online:
Stem Cells Heterogeneity in Cancer

Abstract

Ovarian carcinoma features pronounced clinical, histopathological, and molecular heterogeneity. There is good reason to believe that parts of this heterogeneity can be explained by differences in the respective cell of origin, with a self-renewing fallopian tube secretory cell being likely responsible for initiation of an overwhelming majority of high-grade serous ovarian carcinomas (i.e., type II tumors according to the recent dualistic classification), whereas there are several mutually non-exclusive possibilities for the initiation of type I tumors, including ovarian surface epithelium stem cells, endometrial cells, or even cells of extra-Müllerian origin. Interestingly, both fallopian tube self-renewing secretory cells and ovarian surface epithelium stem cells seem to be characterized by an overlapping array of stemness signaling pathways, especially Wnt/β-catenin. Apart from this variability in the respective cell of origin, the particular clinical behavior of ovarian carcinoma strongly suggests an underlying stem cell component with a crucial impact. This becomes especially evident in high-grade serous ovarian carcinomas treated with classical chemotherapy, which entails a gradual evolution of chemoresistant disease without any apparent selection of clones carrying obvious chemoresistance-associated mutations. Several cell surface markers (e.g., CD24, CD44, CD117, CD133, and ROR1) as well as functional approaches (ALDEFLUOR™ and side population assays) have been used to identify and characterize putative ovarian carcinoma stem cells. We have recently shown that side population cells exhibit marked heterogeneity on their own, which can hamper their straightforward therapeutic targeting. An alternative strategy for stemness-depleting interventions is to target the stem cell niche, i.e., the specific microanatomical structure that secures stem cell maintenance and survival through provision of a set of stem cell-promoting and differentiation-antagonizing factors. Besides identifying direct or indirect therapeutic targets, profiling of side population cells and other ovarian carcinoma stem cell subpopulations can reveal relevant prognostic markers, as exemplified by our recent discovery of the Vav3.1 transcript variant, which filters out a fraction of prognostically unfavorable ovarian carcinoma cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler EK, Corona RI, Lee JM, Rodriguez-Malave N, Mhawech-Fauceglia P, Sowter H, Hazelett DJ, Lawrenson K, Gayther SA (2017) The PAX8 cistrome in epithelial ovarian cancer. Oncotarget 8(65):108316–108332

    PubMed  PubMed Central  Google Scholar 

  • Agnes A, Biondi A, Ricci R, Gallotta V, D’Ugo D, Persiani R (2017) Krukenberg tumors: seed, route and soil. Surg Oncol 26(4):438–445

    Google Scholar 

  • Ahmed N, Escalona R, Leung D, Chan E, Kannourakis G (2018) Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin Cancer Biol 53:265–281

    CAS  PubMed  Google Scholar 

  • Alvero AB, Chen R, Fu H-H, Montagna M, Schwartz PE, Rutherford T, Silasi D-A, Steffensen KD, Waldstrom M, Visintin I, Mor G (2009) Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 8(1):158–166

    CAS  PubMed  Google Scholar 

  • Aust S, Pils D (2014) Epithelial ovarian cancer - more data, more questions? Wien Med Wochenschr 164(21–22):479–486

    PubMed  Google Scholar 

  • Avril S, Dincer Y, Malinowsky K, Wolff C, Gündisch S, Hapfelmeier A, Boxberg M, Bronger H, Becker K-F, Schmalfeldt B (2017) Increased PDGFR-beta and VEGFR-2 protein levels are associated with resistance to platinum-based chemotherapy and adverse outcome of ovarian cancer patients. Oncotarget 8(58):97851–97861

    PubMed  PubMed Central  Google Scholar 

  • Bast RC, Hennessy B, Mills GB (2009) The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9(6):415–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belotte J, Fletcher NM, Alexis M, Morris RT, Munkarah AR, Diamond MP, Saed GM (2015) Sox2 gene amplification significantly impacts overall survival in serous epithelial ovarian cancer. Reprod Sci 22(1):38–46

    PubMed  PubMed Central  Google Scholar 

  • Bhartiya D, Singh J (2015) FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer. Reproduction 149(1):R35–R48

    PubMed  Google Scholar 

  • Boesch M, Reimer D, Rumpold H, Zeimet AG, Sopper S, Wolf D (2012) DyeCycle violet used for side population detection is a substrate of P-glycoprotein. Cytometry A 81(6):517–522

    PubMed  Google Scholar 

  • Boesch M, Zeimet AG, Reimer D, Schmidt S, Gastl G, Parson W, Spoeck F, Hatina J, Wolf D, Sopper S (2014) The side population of ovarian cancer cells defines a heterogeneous compartment exhibiting stem cell characteristics. Oncotarget 5(16):7027–7039

    PubMed  PubMed Central  Google Scholar 

  • Boesch M, Sopper S, Zeimet AG, Reimer D, Gastl G, Ludewig B, Wolf D (2016a) Heterogeneity of cancer stem cells: rationale for targeting the stem cell niche. Biochim Biophys Acta 1866(2):276–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boesch M, Zeimet AG, Fiegl H, Wolf B, Huber J, Klocker H, Gastl G, Sopper S, Wolf D (2016b) High prevalence of side population in human cancer cell lines. Oncoscience 3(3–4):85–87

    PubMed  PubMed Central  Google Scholar 

  • Boesch M, Onder L, Cheng H-W, Novkovic M, Mörbe U, Sopper S, Gastl G, Jochum W, Ruhstaller T, Knauer M, Ludewig B (2018a) Interleukin 7-expressing fibroblasts promote breast cancer growth through sustenance of tumor cell stemness. Oncoimmunology 7(4):e1414129

    PubMed  PubMed Central  Google Scholar 

  • Boesch M, Reimer D, Sopper S, Wolf D, Zeimet AG (2018b) (Iso-)form Matters: Differential Implication of Vav3 Variants in Ovarian Cancer. Oncologist 23(7):757–759.

    Google Scholar 

  • Brantley-Sieders DM, Zhuang G, Vaught D, Freeman T, Hwang Y, Hicks D, Chen J (2009) Host deficiency in Vav2/3 guanine nucleotide exchange factors impairs tumor growth, survival, and angiogenesis in vivo. Mol Cancer Res 7(5):615–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenton JD, Stingl J (2013) Stem cells: anatomy of an ovarian cancer. Nature 495(7440):183–184

    CAS  PubMed  Google Scholar 

  • Cannistra SA (2004) Cancer of the ovary. N Engl J Med 351(24):2519–2529

    CAS  PubMed  Google Scholar 

  • Cardenas C, Alvero AB, Yun BS, Mor G (2016) Redefining the origin and evolution of ovarian cancer: a hormonal connection. Endocr Relat Cancer 23(9):R411–R422

    PubMed  Google Scholar 

  • Chang HL, MacLaughlin DT, Donahoe PK (2008) Somatic stem cells of the ovary and their relationship to human ovarian cancers. In: StemBook. Harvard Stem Cell Institute, Cambridge

    Google Scholar 

  • Coffman L, Mooney C, Lim J, Bai S, Silva I, Gong Y, Yang K, Buckanovich RJ (2013) Endothelin receptor-A is required for the recruitment of antitumor T cells and modulates chemotherapy induction of cancer stem cells. Cancer Biol Ther 14(2):184–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes J, Kantarjian H (2004) Beyond chronic myelogenous leukemia: potential role for imatinib in Philadelphia-negative myeloproliferative disorders. Cancer 100(10):2064–2078

    CAS  PubMed  Google Scholar 

  • Cramer DW, Welch WR (1983) Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis. J Natl Cancer Inst 71(4):717–721

    CAS  PubMed  Google Scholar 

  • Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR, Foster R (2009) CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27(12):2875–2883

    CAS  PubMed  Google Scholar 

  • de Lau W, Peng WC, Gros P, Clevers H (2014) The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev 28(4):305–316

    PubMed  PubMed Central  Google Scholar 

  • Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang L-P, Roby KF, Orsulic S, Connolly DC, Zhang Y, Montone K, Bützow R, Coukos G, Zhang L (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5(4):e10277

    PubMed  PubMed Central  Google Scholar 

  • Di J, Duiveman-de Boer T, Zusterzeel PLM, Figdor CG, Massuger LFAG, Torensma R (2013) The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell Oncol (Dordr) 36(5):363–374

    CAS  Google Scholar 

  • Dou J, Jiang C, Wang J, Zhang X, Zhao F, Hu W, He X, Li X, Zou D, Gu N (2011) Using ABCG2-molecule-expressing side population cells to identify cancer stem-like cells in a human ovarian cell line. Cell Biol Int 35(3):227–234

    CAS  PubMed  Google Scholar 

  • Eyre R, Harvey I, Stemke-Hale K, Lennard TWJ, Tyson-Capper A, Meeson AP (2014) Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population. Tumour Biol 35(10):9879–9892

    CAS  PubMed  Google Scholar 

  • Falconer H, Yin L, Grönberg H, Altman D (2015) Ovarian cancer risk after salpingectomy: a nationwide population-based study. J Natl Cancer Inst 107(2):dju410

    PubMed  Google Scholar 

  • Fathalla MF (1971) Incessant ovulation--a factor in ovarian neoplasia? Lancet 2(7716):163

    CAS  PubMed  Google Scholar 

  • Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M, Martinelli E, Rutella S, Paglia A, Zannoni G, Mancuso S, Scambia G (2008) Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer 18(3):506–514

    CAS  PubMed  Google Scholar 

  • Fleming GF, Ronnet BM, Seidman J, Zaino RJ, Rubin SC (2009) Epithelial ovarian cancer. In: Principles and practice of gynecologic oncology. Lippincott Williams & Wilkins, Philadelphia, pp 763–837

    Google Scholar 

  • Flesken-Nikitin A, Hwang C-I, Cheng C-Y, Michurina TV, Enikolopov G, Nikitin AY (2013) Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature 495(7440):241–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M-Q, Choi Y-P, Kang S, Youn JH, Cho N-H (2010) CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29(18):2672–2680

    CAS  PubMed  Google Scholar 

  • Ghannam-Shahbari D, Jacob E, Kakun RR, Wasserman T, Korsensky L, Sternfeld O, Kagan J, Bublik DR, Aviel-Ronen S, Levanon K, Sabo E, Larisch S, Oren M, Hershkovitz D, Perets R (2018) PAX8 activates a p53-p21-dependent pro-proliferative effect in high grade serous ovarian carcinoma. Oncogene 37(17):2213–2224

    CAS  PubMed  Google Scholar 

  • Ghosh A, Syed SM, Tanwar PS (2017) In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells. Development 144(17):3031–3041

    CAS  PubMed  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806

    CAS  PubMed  Google Scholar 

  • Hatina J, Fernandes MI, Hoffmann MJ, Zeimet AG (2013) Cancer stem cells – basic biological properties and experimental approaches. Encyclopedia of Life Sciences. Chichester, John Wiley & Sons. https://doi.org/10.1002/9780470015902.a0021164.pub2

  • Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry JP, Scolyer RA, Smith AN, Bali A, Vanden Bergh P, Baron-Hay S, Scott C, Fink D, Hacker NF, Sutherland RL, O’Brien PM (2006) A distinct molecular profile associated with mucinous epithelial ovarian cancer. Br J Cancer 94(6):904–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksen R, Funa K, Wilander E, Bäckström T, Ridderheim M, Oberg K (1993) Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms. Cancer Res 53(19):4550–4554

    CAS  PubMed  Google Scholar 

  • Henry C, Llamosas E, Knipprath-Mészáros A, Schoetzau A, Obermann E, Fuenfschilling M, Caduff R, Fink D, Hacker N, Ward R, Heinzelmann-Schwarz V, Ford C (2015) Targeting the ROR1 and ROR2 receptors in epithelial ovarian cancer inhibits cell migration and invasion. Oncotarget 6(37):40310–40326

    PubMed  PubMed Central  Google Scholar 

  • Hornstein I, Alcover A, Katzav S (2004) Vav proteins, masters of the world of cytoskeleton organization. Cell Signal 16(1):1–11

    CAS  PubMed  Google Scholar 

  • Hosonuma S, Kobayashi Y, Kojo S, Wada H, Seino K, Kiguchi K, Ishizuka B (2011) Clinical significance of side population in ovarian cancer cells. Hum Cell 24(1):9–12

    PubMed  PubMed Central  Google Scholar 

  • Hu L, McArthur C, Jaffe RB (2010) Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 102(8):1276–1283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H-S, Chu S-C, Hsu C-F, Chen P-C, Ding D-C, Chang M-Y, Chu T-Y (2015) Mutagenic, surviving and tumorigenic effects of follicular fluid in the context of p53 loss: initiation of fimbria carcinogenesis. Carcinogenesis 36(11):1419–1428

    CAS  PubMed  Google Scholar 

  • Joglekar-Javadekar M, Van Laere S, Bourne M, Moalwi M, Finetti P, Vermeulen PB, Birnbaum D, Dirix LY, Ueno N, Carter M, Rains J, Ramachandran A, Bertucci F, van Golen KL (2017) Characterization and targeting of platelet-derived growth factor receptor alpha (PDGFRA) in inflammatory breast cancer (IBC). Neoplasia 19(7):564–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • King SM, Hilliard TS, Wu LY, Jaffe RC, Fazleabas AT, Burdette JE (2011) The impact of ovulation on fallopian tube epithelial cells: evaluating three hypotheses connecting ovulation and serous ovarian cancer. Endocr Relat Cancer 18(5):627–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klug LR, Heinrich MC (2017) PDGFRA antibody for soft tissue sarcoma. Cell 168(4):555

    CAS  PubMed  Google Scholar 

  • Kryczek I, Liu S, Roh M, Vatan L, Szeliga W, Wei S, Banerjee M, Mao Y, Kotarski J, Wicha MS, Liu R, Zou W (2012) Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer 130(1):29–39

    CAS  PubMed  Google Scholar 

  • Kurman RJ, Shih I-M (2016) The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am J Pathol 186(4):733–747

    PubMed  PubMed Central  Google Scholar 

  • Kuroda T, Hirohashi Y, Torigoe T, Yasuda K, Takahashi A, Asanuma H, Morita R, Mariya T, Asano T, Mizuuchi M, Saito T, Sato N (2013) ALDH1-high ovarian cancer stem-like cells can be isolated from serous and clear cell adenocarcinoma cells, and ALDH1 high expression is associated with poor prognosis. PLoS One 8(6):e65158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra AK, Sundaresan S, Nieman KM, Pascual G, Benitah SA, Montag A, Yamada SD, Abumrad NA, Lengyel E (2018) Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene 37(17):2285–2301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai D-M, Liu T, Huang Y, Wang L-H, Zhang J, Cheng W-W (2009) Identification and characterization of ovarian cancer stem-like cells from primary tumor. Zhonghua Fu Chan Ke Za Zhi 44(12):936–940

    PubMed  Google Scholar 

  • Landen CN, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM, Bast RC, Coleman RL, Lopez-Berestein G, Sood AK (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9(12):3186–3199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M, Sie D, Lewsley L-A, Hanif A, Wilson C, Dowson S, Glasspool RM, Lockley M, Brockbank E, Montes A, Walther A, Sundar S, Edmondson R, Hall GD, Clamp A, Gourley C, Hall M, Fotopoulou C, Gabra H, Paul J, Supernat A, Millan D, Hoyle A, Bryson G, Nourse C, Mincarelli L, Sanchez LN, Ylstra B, Jimenez-Linan M, Moore L, Hofmann O, Markowetz F, McNeish IA, Brenton JD (2018) Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet 50(9):1262–1270

    CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, Ha G, Biele J, Yap D, Wan A, Prentice LM, Khattra J, Smith MA, Nielsen CB, Mullaly SC, Kalloger S, Karnezis A, Shumansky K, Siu C, Rosner J, Chan HL, Ho J, Melnyk N, Senz J, Yang W, Moore R, Mungall AJ, Marra MA, Bouchard-Côté A, Gilks CB, Huntsman DG, McAlpine JN, Aparicio S, Shah SP (2016) Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat Genet 48(7):758–767

    CAS  PubMed  Google Scholar 

  • Mehra K, Mehrad M, Ning G, Drapkin R, McKeon FD, Xian W, Crum CP (2011) STICS, SCOUTs and p53 signatures; a new language for pelvic serous carcinogenesis. Front Biosci (Elite Ed) 3:625–634

    Google Scholar 

  • Meirelles K, Benedict LA, Dombkowski D, Pepin D, Preffer FI, Teixeira J, Tanwar PS, Young RH, MacLaughlin DT, Donahoe PK, Wei X (2012) Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proc Natl Acad Sci U S A 109(7):2358–2363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsui H, Shibata K, Suzuki S, Umezu T, Mizuno M, Kajiyama H, Kikkawa F (2012) Functional interaction between peritoneal mesothelial cells and stem cells of ovarian yolk sac tumor (SC-OYST) in peritoneal dissemination. Gynecol Oncol 124(2):303–310

    PubMed  Google Scholar 

  • Moserle L, Indraccolo S, Ghisi M, Frasson C, Fortunato E, Canevari S, Miotti S, Tosello V, Zamarchi R, Corradin A, Minuzzo S, Rossi E, Basso G, Amadori A (2008) The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res 68(14):5658–5668

    CAS  PubMed  Google Scholar 

  • Nagendra PB, Goad J, Nielsen S, Rassam L, Lombard JM, Nahar P, Tanwar PS (2016) Ovarian hormones through Wnt signalling regulate the growth of human and mouse ovarian cancer initiating lesions. Oncotarget 7(40):64836–64853

    PubMed  PubMed Central  Google Scholar 

  • Ng A, Barker N (2015) Ovary and fimbrial stem cells: biology, niche and cancer origins. Nat Rev Mol Cell Biol 16(10):625–638

    CAS  PubMed  Google Scholar 

  • Ng A, Tan S, Singh G, Rizk P, Swathi Y, Tan TZ, Huang RY-J, Leushacke M, Barker N (2014) Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nat Cell Biol 16(8):745–757

    CAS  PubMed  Google Scholar 

  • Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge EE, Barnes MN (1999) Epithelial ovarian cancer: prevention, diagnosis, and treatment. CA Cancer J Clin 49(5):297–320

    CAS  PubMed  Google Scholar 

  • Peng S, Maihle NJ, Huang Y (2010) Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29(14):2153–2159

    CAS  PubMed  Google Scholar 

  • Perets R, Drapkin R (2016) It’s totally tubular… riding the new wave of ovarian cancer research. Cancer Res 76(1):10–17

    CAS  PubMed  Google Scholar 

  • Pils D, Hager G, Tong D, Aust S, Heinze G, Kohl M, Schuster E, Wolf A, Sehouli J, Braicu I, Vergote I, Cadron I, Mahner S, Hofstetter G, Speiser P, Zeillinger R (2012) Validating the impact of a molecular subtype in ovarian cancer on outcomes: a study of the OVCAD Consortium. Cancer Sci 103(7):1334–1341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reimer D, Boesch M, Wolf D, Marth C, Sopper S, Hatina J, Altevogt P, Parson W, Hackl H, Zeimet AG (2018) Truncated isoform Vav3.1 is highly expressed in ovarian cancer stem cells and clinically relevant in predicting prognosis and platinum-response. Int J Cancer 142(8):1640–1651

    CAS  PubMed  Google Scholar 

  • Roy L, Bobbs A, Sattler R, Kurkewich JL, Dausinas PB, Nallathamby P, Cowden Dahl KD (2018) CD133 promotes adhesion to the ovarian cancer metastatic niche.. Cancer Growth Metastasis 11:1179064418767882

    Google Scholar 

  • Siu MKY, Wong ESY, Kong DSH, Chan HY, Jiang L, Wong OGW, Lam EW-F, Chan KKL, Ngan HYS, Le X-F, Cheung AN (2013) Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers. Oncogene 32(30):3500–3509

    CAS  PubMed  Google Scholar 

  • Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A 103(30):11154–11159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan TZ, Heong V, Ye J, Lim D, Low J, Choolani M, Scott C, Tan DSP, Huang RY-J (2018) Decoding transcriptomic intra-tumour heterogeneity to guide personalised medicine in ovarian cancer. J Pathol 247(3):305–319. https://doi.org/10.1002/path.5191

    Article  CAS  PubMed  Google Scholar 

  • Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, Agulnik M, Cooney MM, Livingston MB, Pennock G, Hameed MR, Shah GD, Qin A, Shahir A, Cronier DM, Ilaria R, Conti I, Cosaert J, Schwartz GK (2016) Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet 388(10043):488–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tayama S, Motohara T, Narantuya D, Li C, Fujimoto K, Sakaguchi I, Tashiro H, Saya H, Nagano O, Katabuchi H (2017) The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer. Oncotarget 8(27):44312–44325

    PubMed  PubMed Central  Google Scholar 

  • Torng P-L (2017) Clinical implication for endometriosis associated with ovarian cancer. Gynecol Minim Invasive Ther 6(4):152–156

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cai KQ, Smith ER, Yeasky TM, Moore R, Ganjei-Azar P, Klein-Szanto AJ, Godwin AK, Hamilton TC, Xu X-X (2016) Follicle depletion provides a permissive environment for ovarian carcinogenesis. Mol Cell Biol 36(18):2418–2430

    PubMed  PubMed Central  Google Scholar 

  • Wei X, Dombkowski D, Meirelles K, Pieretti-Vanmarcke R, Szotek PP, Chang HL, Preffer FI, Mueller PR, Teixeira J, MacLaughlin DT, Donahoe PK (2010) Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proc Natl Acad Sci U S A 107(44):18874–18879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Y, Hou Y, Huang Z, Cai J, Wang Z (2017) SOX2 is required to maintain cancer stem cells in ovarian cancer. Cancer Sci 108(4):719–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang T, Long H, He L, Han X, Lin K, Liang Z, Zhuo W, Xie R, Zhu B (2015) Interleukin-17 produced by tumor microenvironment promotes self-renewal of CD133+ cancer stem-like cells in ovarian cancer. Oncogene 34(2):165–176

    CAS  PubMed  Google Scholar 

  • Yan HC, Fang LS, Xu J, Qiu YY, Lin XM, Huang HX, Han QY (2014) The identification of the biological characteristics of human ovarian cancer stem cells. Eur Rev Med Pharmacol Sci 18(22):3497–3503

    CAS  PubMed  Google Scholar 

  • Yan HC, Xu J, Fang LS, Qiu YY, Lin XM, Huang HX, Han QY (2015) Ectopic expression of the WWOX gene suppresses stemness of human ovarian cancer stem cells. Oncol Lett 9(4):1614–1620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeimet AG, Reimer D, Sopper S, Boesch M, Martowicz A, Roessler J, Wiedemair AM, Rumpold H, Untergasser G, Concin N, Hofstetter G, Muller-Holzner E, Fiegl H, Marth C, Wolf D, Pesta M, Hatina J (2012) Ovarian cancer stem cells. Neoplasma 59(6):747–755

    CAS  PubMed  Google Scholar 

  • Zhang S, Balch C, Chan MW, Lai H-C, Matei D, Schilder JM, Yan PS, Huang TH-M, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Cui B, Lai H, Liu G, Ghia EM, Widhopf GF, Zhang Z, Wu CCN, Chen L, Wu R, Schwab R, Carson DA, Kipps TJ (2014) Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy. Proc Natl Acad Sci U S A 111(48):17266–17271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q-H, Dou H-T, Xu P, Zhuang S-C, Liu P-S (2015) Tumor recurrence and drug resistance properties of side population cells in high grade ovary cancer. Drug Res (Stuttg) 65(3):153–157

    CAS  Google Scholar 

  • Zhang M, Liu T, Xia B, Yang C, Hou S, Xie W, Lou G (2018) Platelet-derived growth factor d is a prognostic biomarker and is associated with platinum resistance in epithelial ovarian cancer. Int J Gynecol Cancer 28(2):323–331

    CAS  PubMed  Google Scholar 

  • Zorn KK, Bonome T, Gangi L, Chandramouli GVR, Awtrey CS, Gardner GJ, Barrett JC, Boyd J, Birrer MJ (2005) Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res 11(18):6422–6430

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Research Promotion Agency (FFG) under Grant 858057 (HD FACS) and COMET Center Oncotyrol and by the Charles University in Prague Specific Student Research Project Nr. 260393/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain G. Zeimet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hatina, J. et al. (2019). Ovarian Cancer Stem Cell Heterogeneity. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Cancer. Advances in Experimental Medicine and Biology, vol 1139. Springer, Cham. https://doi.org/10.1007/978-3-030-14366-4_12

Download citation

Publish with us

Policies and ethics