Skip to main content

Apricot (Prunus armeniaca L.) Oil

  • Chapter
  • First Online:
Fruit Oils: Chemistry and Functionality

Abstract

The apricot (Prunus armeniaca L.) is an important agricultural crop that widely cultıvated in most of the Mediterranean and Central Asian countries. As known, the fruit of apricot has an important place in human nutrition, and can be consumed as fresh or processed. World apricot production is about 2.5 million tonnes. However, apricot kernels are produced as byproducts and often considered a waste product of fruits processing industry. They have potential to be economically-valuable resource, since they are a rich source of dietary protein as well as fiber. In addition, the kernels are considered as potential sources of oils. Apricot kernels have a high oil yield, which is comparable to the commonly used oils of oilseed crops such as soybean, canola and sunflower. Oil from these kernels can be obtained by solvent extraction or cold pressing method. The oil contains a high percentage of unsaturated fatty acids and is a rich source of minor compounds such as sterols, tocochromanols and squalene, hence attracting interest for the utilization in food and pharmaceutical industry. Due to its nutritional chemical composition and functional properties, apricot kernel oil can be used as edible oil and in many applications like food products formulation, cosmetics as well as functional and medicinal supplements. In this chapter, particular attention has also been given to the composition and applications of kernel oil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akin, E. B., Karabulut, I., & Topcu, A. (2008). Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chemistry, 107(2), 939–948.

    CAS  Google Scholar 

  • Alpaslan, M., & Hayta, M. (2006). Apricot kernel: Physical and chemical properties. Journal of the American Oil Chemists’ Society, 83(5), 469–471.

    CAS  Google Scholar 

  • Aparicio, R., & Apariqcio-Ruiz, R. (2000). Authentication of vegetable oils by chromatographic techniques. Journal of Chromatography, 881, 93–104.

    CAS  PubMed  Google Scholar 

  • Bendini, A., Cerretani, L., Carrasco-Pancorbo, A., Gómez-Caravaca, A. M., Segura-Carretero, A., Fernández-Gutiérrez, A., & Lercker, G. (2007). Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade Alessandra. Molecules, 12, 1679–1719. https://doi.org/10.3390/12081679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer, R., & Melton, L. D. (1990). Composition of New Zealand apricot kernels. New Zealand Journal of Crop and Horticultural Science, 18(1), 39–42.

    CAS  Google Scholar 

  • Bhatnagar, A. S., & Gopala Krishna, A. G. (2014). Lipid classes and subclasses of cold-pressed and solvent extracted oils from commercial Indian Niger (Guizotia abyssinica L.f. Cass.) seed. Journal of the American Oil Chemists’ Society, 91(7), 1205–1216.

    CAS  Google Scholar 

  • Bozan, B., & Temelli, F. (2008). Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresource Technology, 99(14), 6354–6359.

    CAS  PubMed  Google Scholar 

  • CBI Ministry of Foreign Affairs (2014). CBI product fact sheet: Apricot Kernel Oil in Germany. https://www.cbi.eu/sites/default/files/market_information/researches/product-factsheet-apricot-kernel-oil-germany-vegetable-oils-oilseeds-2014.pdf.

  • Chen, Z. Y., Jiao, R., & Ma, K. Y. (2008). Cholesterol-lowering nutraceuticals and functional foods. Journal of Agricultural and Food Chemistry, 56, 8761–8773.

    CAS  PubMed  Google Scholar 

  • Chevallier, A. (1996). The encyclopedia of medicinal plants. New York: DK Publishing.

    Google Scholar 

  • Clifford, H. (2001). III. Sources of natural antioxidants: Oilseeds, nuts, cereals, legumes, animal products and microbial sources. In J. Pokorny, N. Yanishlieva, & M. Gordon (Eds.), Antioxidants in food practical applications. Cambridge, UK: Woodhead Publishing Limited.

    Google Scholar 

  • Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science and Emerging Technologies, 9, 85–91.

    CAS  Google Scholar 

  • De Jong, N., Plat, J., & Mensink, R. P. (2003). Metabolic effects of plant sterols and stanols. The Journal of Nutritional Biochemistry, 4, 362–369.

    Google Scholar 

  • Decker, E. A. (2002). Antioxidant mechanism. In C. C. Akoh & D. B. Min (Eds.), Food lipids: Chemistry, nutrition and biotechnology. New York: Marcel Dekker. 475–492p.

    Google Scholar 

  • Dolatowski, Z. J., Stadnik, J., & Stasiak, D. (2007). Application of ultrasound in food technology. Acta Scientiarum Polonorum Technologia Alimentaria, 6(3), 89–99.

    Google Scholar 

  • Egan, H., Ronald, K. S., & Ronald, S. (1981). Pearson’s chemical analysis of foods (8th ed., pp. 507–547). Edinburgh, London, Melbourne and New York: Churchill Livingstone.

    Google Scholar 

  • El-Adawy, T. A., & Taha, K. M. (2001). Characterization and composition of different seed oils and flours. Food Chemistry, 74, 47–54.

    CAS  Google Scholar 

  • Esterbauer, H., Dieber-Rotheneder, M., Striegl, G., & Waeg, G. (1991). Role of vitamin E in preventing the oxidation of low-density lipoprotein. The American Journal of Clinical Nutrition, 53, 314–321.

    Google Scholar 

  • FAOSTAT. (2018). http://www.fao.org/faostat/en/#data/QV.

  • Farine, M., Soulier, J., & Comes, F. (1986). Etude de la fraction glyceridique des huiles degraines de quelques Rosaceae prunoides. Reviev des Frances Corps Gras, 33(83), 115–117.

    Google Scholar 

  • Femenia, A., Rossello, C., Mulet, A., & Canellas, J. (1995). Chemical composition of bitter and sweet apricot kernels. Journal of Agricultural and Food Chemistry, 43(2), 356–361.

    CAS  Google Scholar 

  • Gayas, B., Kaur, G., & Gul, K. (2017). Ultrasound-assisted extraction of apricot kernel oil: Effects on functional and rheological properties. Journal of Food Process Engineering, 40(3), e12439.

    Google Scholar 

  • Górnaś, P., Mišina, I., Grāvīte, I., Soliven, A., Kaufmane, E., & Segliņa, D. (2015). Tocochromanols composition in kernels recovered from different apricot varieties: RP-HPLC/FLD and RP-UPLC-ESI/MSn study. Natural Product Research, 29(13), 1222–1227.

    PubMed  Google Scholar 

  • Górnaś, P., Radziejewska-Kubzdela, E., Mišina, I., Biegańska-Marecik, R., Grygier, A., & Rudzińska, M. (2017). Tocopherols, tocotrienols and carotenoids in kernel oils recovered from 15 apricot (Prunus armeniaca L.) genotypes. Journal of the American Oil Chemists’ Society, 94(5), 693–699.

    Google Scholar 

  • Greger, V., & Schieberle, P. (2007). Characterization of the key aroma compounds in apricots (Prunus armeniaca) by application of the molecular sensory science concept. Journal of Agricultural and Food Chemistry, 55(13), 5221–5228.

    CAS  PubMed  Google Scholar 

  • Gurfinger, T., & Letan, A. (1973). Detection of adulteration of almond oil with apricot oil through determination of tocopherols. Journal of Agricultural and Food Chemistry, 21, 1120.

    CAS  Google Scholar 

  • Hacıseferoğulları, H., Gezer, I., Özcan, M. M., & Murat Asma, B. (2007). Post-harvest chemical and physical-mechanical properties of some apricot varieties cultivated in Turkey. Journal of Food Engineering, 79(1), 364–373.

    Google Scholar 

  • Harwood, J. L., & Yaqoob, P. (2002). Nutritional and health aspects of olive oil. European Journal of Lipid Science and Technology, 104, 685–697.

    CAS  Google Scholar 

  • Hassanein, M. M. (1999). Studies on non-traditional oils: I. Detailed studies on different lipid profiles of some Rosaceae kernel oils. Grasas y Aceites, 50(85), 379–384.

    CAS  Google Scholar 

  • Hassanien, M. M., Abdel-Razek, A. G., Rudzińska, M., Siger, A., Ratusz, K., & Przybylski, R. (2014). Phytochemical contents and oxidative stability of oils from non-traditional sources. European Journal of Lipid Science and Technology, 116(11), 1563–1571.

    CAS  Google Scholar 

  • Hensley, K., Benaksas, E. J., Boli, R., Comp, P., Grammas, P., Hamdheydari, L., Mou, S., Pye, Q. N., Stoddard, M. F., Wallis, G., Williamson, K. S., West, M., Wechter, W. J., & Floyd, R. A. (2004). New perspectives on vitamin E: Gamma tocopherol and carboxyethyl hydroxyl chroman metabolites in biology and medicine. Free Radical Biology & Medicine, 36, 1–15.

    CAS  Google Scholar 

  • Hicks, K. B., & Moreau, R. A. (2001). Phytosterols and phytostanols: Functional food cholesterol busters. Food Technology, 55, 63–67.

    CAS  Google Scholar 

  • Huang, S. W., Frankel, E. N., & German, B. (1994). Antioxidant activity of α- and γ-tocopherols in oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 42, 2108–2114.

    CAS  Google Scholar 

  • Hummer, K. E., & Janick, J. (2009). Rosaceae: Taxonomy, economic importance, genomics. In Genetics and genomics of Rosaceae (pp. 1–17). New York: Springer.

    Google Scholar 

  • Kamal-Eldin, A., & Andersson, R. (1997). A multivariate study of the correlation between tocopherol content and fatty acid composition in different vegetable oils. Journal of the American Oil Chemists’ Society, 74, 375–380.

    CAS  Google Scholar 

  • Kiralan, M., Kayahan, M., Kiralan, S. S., & Ramadan, M. F. (2018). Effect of thermal and photo oxidation on the stability of cold-pressed plum and apricot kernel oils. European Food Research and Technology, 244(1), 31–42.

    CAS  Google Scholar 

  • Kostadinović Veličkovska, S., Brühl, L., Mitrev, S., Mirhosseini, H., & Matthäus, B. (2015). Quality evaluation of cold-pressed edible oils from Macedonia. European Journal of Lipid Science and Technology, 117(12), 2023–2035.

    Google Scholar 

  • Kutlu, T., Durmaz, G., Ateş, B., & Erdoğan, A. (2009). Protective effect of dietary apricot kernel oil supplementation on cholesterol evels and antioxidant status of liver in hypercholesteremic rats. Journal of Food, Agriculture and Environment, 7(3–4), 61–65.

    CAS  Google Scholar 

  • Lewis, W. H., & Elvin-Lewis, M. P. F. (2003). Medicinal botany: Plants affecting human health (p. 214). Hoboken: Wiley.

    Google Scholar 

  • Lo Bianco, R., Farina, V., Indelicato, S. G., Filizzola, F., & Agozzino, P. (2010). Fruit physical, chemical and aromatic attributes of early, intermediate and late apricot cultivars. Journal of the Science of Food and Agriculture, 90(6), 1008–1019.

    CAS  PubMed  Google Scholar 

  • Manzoor, M., Anwar, F., Ashraf, M., & Alkharfy, K. M. (2012). Physico-chemical characteristics of seeds oils extracted from different apricot (Prunus armeniaca L.) varieties from Pakistan. Grasas y Aceites, 63, 193–201.

    CAS  Google Scholar 

  • Matricardi, M., Hesketh, R., & Farrell, S. (2002). Technical Note-20. Supercritical fluid. Newark: Technologies.

    Google Scholar 

  • Matthaus, B., & Ozcan, M. M. (2009). Fatty acids and tocopherol contents of some Prunus spp. Kernel oil. Journal of Food Lipids, 16, 187–199.

    Google Scholar 

  • Mensink, R. P., & Katan, M. B. (1987). Effect of monounsaturated fatty acids versus complex carbohydrates on high-density lipoproteins in healthy men and women. Lancet, 329, 122–125.

    Google Scholar 

  • Nikokavouraa, A., Christodouleas, D., Yannakopouloua, E., Papadopoulos, K., & Calokerinos, A. C. (2011). Evaluation of antioxidant activity of hydrophilic and lipophilic compounds in edible oils by a novel fluorimetric method. Talanta, 84, 874–880.

    Google Scholar 

  • Orhan, I., Koca, U., Aslan, S., Kartal, M., & Kusmenoglu, S. (2008). Fatty acid analysis of some Turkish apricot seed oils by GC and GC-MS techniques. Turkish Journal of Pharmaceutical Sciences, 5(1), 29–34.

    CAS  Google Scholar 

  • Özkal, S. G., Yener, M. E., & Bayındırlı, L. (2005). Mass transfer modeling of apricot kernel oil extraction with supercritical carbon dioxide. The Journal of Supercritical Fluids, 35(2), 119–127.

    Google Scholar 

  • Parry, J., Su, L., Luther, M., Zhou, K., Yurawecz, M. P., Whittaker, P., & Yu, L. (2005). Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. Journal of Agricultural and Food Chemistry, 53, 566–573.

    CAS  PubMed  Google Scholar 

  • Patil Sachin, B. S., Wakte, P. S., & Shinde, D. B. (2013). Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design. Journal of Advanced Research, 5, 629–635.

    Google Scholar 

  • Prescha, A., Grajzer, M., Dedyk, M., & Grajeta, H. (2014). The antioxidant activity and oxidative stability of cold-pressed oils. Journal of the American Oil Chemists’ Society, 91, 1291–1301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quezada, R. S. (2003). U.S. Patent No. 6,582,736. Washington, D.C.: U.S. Patent and Trademark Office.

    Google Scholar 

  • Ramadan, M. F., & Moersel, J. T. (2006). Screening of the antiradical action of vegetable oils. Journal of Food Composition and Analysis, 19, 838–842.

    CAS  Google Scholar 

  • Ramadan, M. F., Zayed, R., Abozid, M., & Asker, M. M. S. (2011). Apricot and pumpkin oils reduce plasma cholesterol and triacylglycerol concentrations in rats fed a high-fat diet. Grasas y Aceites, 62(4), 443–452.

    CAS  Google Scholar 

  • Rosendahl, A., Pyle, D. L., & Niranjan, K. (1996). Aqueous and enzymatic processes for edible oil extraction. Enzyme and Microbial Technology, 19, 402–420.

    Google Scholar 

  • Rudzińska, M., Górnaś, P., Raczyk, M., & Soliven, A. (2017). Sterols and squalene in apricot (Prunus armeniaca L.) kernel oils: The variety as a key factor. Natural Product Research, 31(1), 84–88.

    PubMed  Google Scholar 

  • Sanders, T. H. (2001). Individual oils: Peanut oil. In R. F. Wilson (Ed.), Proceedings of the world conference on oilseed processing and utilization (pp. 141–144). Champaign: American Oil Chemist’s Society Press.

    Google Scholar 

  • Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds-recent developments. Trends in Food Science and Technology, 12(11), 401–413.

    CAS  Google Scholar 

  • Shariatifar, N., Pourfard, I. M., Khanıkı, G. J., Nabızadeh, R., Akbarzadeh, A., & Nejad, A. S. M. (2017). Mineral composition, physico-chemical properties and fatty acids profile of Prunus armeniaca apricot seed oil. Asian Journal of Chemistry, 29(9), 2011–2015.

    CAS  Google Scholar 

  • Sharma, A., & Gupta, M. N. (2006). Ultrasonic pre-irradiation effect upon aqueous enzymatic oil extraction from almond and apricot seeds. Ultrasonics Sonochemistry, 13(6), 529–534.

    CAS  PubMed  Google Scholar 

  • Sies, H., & Murphy, M. E. (1991). Role of tocopherols in the protection of biological systems against oxidative damage. Journal of Photochemistry and Photobiology B: Biology, 8, 211–224.

    CAS  Google Scholar 

  • Siger, A., Nogala-Kalucka, M., & Lampart-Szczapae, E. (2007). The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. Journal of Lipids, 15, 137–149.

    Google Scholar 

  • Slover, H. T., Jr., Thompson, H. R., & Merola, G. V. (1983). Determination of tocopherols and sterols by capillary gas chromatography. Journal of the American Oil Chemists’ Society, 60, 1524–1528.

    CAS  Google Scholar 

  • Timmermann, F. (1990). Tocopherole – Antioxidative wirkung bei fetten und ölen. Fat Science Technology, 92, 201–206.

    CAS  Google Scholar 

  • Turan, S., Topcu, A., Karabulut, I., Vural, H., & Hayaloglu, A. A. (2007). Fatty acid, triacylglycerol, phytosterol, and tocopherol variations in kernel oil of Malatya apricots from Turkey. Journal of Agricultural and Food Chemistry, 55, 10787–10794.

    CAS  PubMed  Google Scholar 

  • Uluata, S. (2016). Effect of extraction method on biochemical properties and oxidative stability of apricot seed oil. Academic Food Journal, 14(4), 333–340.

    Google Scholar 

  • Venkatachalam, M., & Sathe, S. K. (2006). Chemical composition of selected edible nut seeds. Journal of Agricultural and Food Chemistry, 54, 4705–4714.

    CAS  Google Scholar 

  • Waraho, T., McClements, D. J., & Decker, E. A. (2011). Mechanisms of lipid oxidation in food dispersions. Trends in Food Science and Technology, 22(1), 3–13.

    CAS  Google Scholar 

  • Warleta, F., Campos, M., Allouche, Y., Sánchez-Quesada, C., Ruiz-Mora, J., Beltrán, G., & Gaforio, J. J. (2010). Squalene protects against oxidative DNA damage in MCF10A human mammary epithelial cells but not in MCF7 and MDA-MB-231 human breast cancer cells. Food and Chemical Toxicology, 48(4), 1092–1100.

    CAS  PubMed  Google Scholar 

  • Yıldız, F. (1994). New technologies in apricot processing. Journal of Standard, Apricot Special Issue, Ankara, 67–69.

    Google Scholar 

  • Zbigniew, J., Dolatowski, J. S., & Dariusz, S. (2007). Application of ultrasound in food technology. Acta Scientrum Polonorum Technologia Alimentaria, 6(3), 89–99.

    Google Scholar 

  • Zhang, S. B., Lu, Q. Y., Yang, H., & Li Yu Wang, S. (2011). Aqueous enzymatic extraction of oil and protein hydrolysates from roasted peanut seeds. Journal of the American Oil Chemists’ Society, 88, 727–732.

    CAS  Google Scholar 

  • Zhou, B., Wang, Y., Kang, J., Zhong, H., & Prenzler, P. D. (2016). The quality and volatile-profile changes of Longwangmo apricot (Prunus armeniaca L.) kernel oil prepared by different oil-producing processes. European Journal of Lipid Science and Technology, 118(2), 236–243.

    CAS  Google Scholar 

  • Zlatanov, M., & Janakieva, I. (1998). Phospholipid composition of some fruit-stone oils of Rosaceae species. European Journal of Lipid Science and Technology, 100(7), 312–315.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiralan, M., Özkan, G., Kucukoner, E., Ozcelik, M.M. (2019). Apricot (Prunus armeniaca L.) Oil. In: Ramadan, M. (eds) Fruit Oils: Chemistry and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-12473-1_25

Download citation

Publish with us

Policies and ethics