Skip to main content

High Throughput Computation of Reference Ranges of Biventricular Cardiac Function on the UK Biobank Population Cohort

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11395))

Abstract

The exploitation of large-scale population data has the potential to improve healthcare by discovering and understanding patterns and trends within this data. To enable high throughput analysis of cardiac imaging data automatically, a pipeline should comprise quality monitoring of the input images, segmentation of the cardiac structures, assessment of the segmentation quality, and parsing of cardiac functional indexes. We present a fully automatic, high throughput image parsing workflow for the analysis of cardiac MR images, and test its performance on the UK Biobank (UKB) cardiac dataset. The proposed pipeline is capable of performing end-to-end image processing including: data organisation, image quality assessment, shape model initialisation, segmentation, segmentation quality assessment, and functional parameter computation; all without any user interaction. To the best of our knowledge, this is the first paper tackling the fully automatic 3D analysis of the UKB population study, providing reference ranges for all key cardiovascular functional indexes, from both left and right ventricles of the heart. We tested our workflow on a reference cohort of 800 healthy subjects for which manual delineations, and reference functional indexes exist. Our results show statistically significant agreement between the manually obtained reference indexes, and those automatically computed using our framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roth, G.A., et al.: Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 70(1), 1–25 (2017)

    Article  Google Scholar 

  2. Petersen, S.E., et al.: Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in caucasians from the UK Biobank population cohort. J. Cardiovasc. Mag. Reson. 19(1), 18 (2017)

    Article  Google Scholar 

  3. Gorgolewski, K., et al.: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers Neuroinformatics 5, 13 (2011)

    Article  Google Scholar 

  4. Zhang, L., et al.: Automated quality assessment of cardiac MR images using convolutional neural networks. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2016. LNCS, vol. 9968, pp. 138–145. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46630-9_14

    Chapter  Google Scholar 

  5. Van Assen, H.C., et al.: SPASM: a 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Med. Image Anal. 10(2), 286–303 (2006)

    Article  Google Scholar 

  6. Albà, X., Lekadir, K., Pereañez, M., Medrano-Gracia, P., Young, A.A., Frangi, A.F.: Automatic initialization and quality control of large-scale cardiac MRI segmentations. Med. Image Anal. 43, 129–141 (2018)

    Article  Google Scholar 

  7. Valindria, V.V., et al.: Reverse classification accuracy: predicting segmentation performance in the absence of ground truth. IEEE Trans. Med. Imaging (2017)

    Google Scholar 

Download references

Acknowledgements

R. Attar was funded by the Faculty of Engineering Doctoral Academy Scholarship, University of Sheffield. This work has been partially supported by the MedIAN Network (EP/N026993/1) funded by the Engineering and Physical Sciences Research Council (EPSRC), and the European Commission through FP7 contract VPH-DARE@IT (FP7-ICT-2011-9-601055) and H2020 Program contract InSilc (H2020-SC1-2017-CNECT-2-777119). The UKB CMR dataset has been provided under UK Biobank Application 2964.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro F. Frangi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Attar, R. et al. (2019). High Throughput Computation of Reference Ranges of Biventricular Cardiac Function on the UK Biobank Population Cohort. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12029-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12028-3

  • Online ISBN: 978-3-030-12029-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics