Skip to main content

Fundamental is Non-random

  • Chapter
  • First Online:
  • 1389 Accesses

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Although we use randomness when we don’t know any better, a principle of indifference cannot be used to explain anything interesting or fundamental. For example, in thermodynamics it can be shown that the real explanatory work is being done by the Second Law, not the equal a priori probability postulate. But to explain the interesting Second Law, many physicists try to retreat to a “random explanation,” which fails. Looking at this problem from a different perspective reveals a natural solution: boundary-based explanations that arguably should be viewed as no less fundamental than other physical laws.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We’ll circle back to this in due course. Dynamical explanations explain relationships between states, not the states themselves.

  2. 2.

    Unless someone tells you which rule to use (which “coarse-graining”), actual states cannot be said to have any entropy at all!

  3. 3.

    A recent defense of random anthropic models can be found in [16].

References

  1. Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, Oxford, UK (1996)

    Google Scholar 

  2. Albert, D.Z.: Time and Chance. Harvard University Press, Harvard (2000)

    Google Scholar 

  3. Wallace, D.: Gravity, entropy, and cosmology: in search of clarity. Brit. J. Phil. Sci. 61, 513–540 (2010)

    Article  MathSciNet  Google Scholar 

  4. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Wharton, K.B., Miller, D.J., Price, H.: Action duality: a constructive principle for quantum foundations. Symmetry 3, 524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Schulman, L.S.: Time’s Arrows and Quantum Measurement. Cambridge University Press, Cambridge, UK (1997)

    Google Scholar 

  7. Carroll, S.M.: In What Sense Is the Early Universe Fine-Tuned? arXiv:1406.3057 (2014)

  8. Barbour, J., Koslowski, T., Mercati, F.: Identification of a gravitational arrow of time. Phys. Rev. Lett. 113, 181101 (2014)

    Article  ADS  Google Scholar 

  9. Evans, P.W., Gryb, S., Thébault, K.P.Y.: \(\Psi \)-epistemic quantum cosmology. Stud. Hist. Phil. Sci. B 56, 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  10. Albrecht, A.: de Sitter equilibrium as a fundamental framework for cosmology. J. Phys. Conf. Ser. 174, 012006 (2009)

    Google Scholar 

  11. Linde, A., Vanchurin, V., Winitzki, S.: Stationary measure in the multiverse. J. Cosmol. Astropart. Phys. 0901, 031 (2009)

    Article  ADS  Google Scholar 

  12. Carroll, S.M., Chen, J.: Spontaneous Inflation and the Origin of the Arrow of Time. arXiv:hep-th/0410270 (2004)

  13. Weaver, C.J.: On the Carroll-Chen model. J. Gen. Phil. Sci. 48, 97–124 (2017)

    Article  Google Scholar 

  14. Aguirre, A., Gratton, S., Johnson, M.C.: Phys. Rev. D 75, 123501 (2007)

    Article  ADS  Google Scholar 

  15. Bousso, R., Freivogel, B., Yang, I.S.: Phys. Rev. D 77, 103514 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lazarovici, D., Reichert, P.: Arrow(s) of time without a past hypothesis. arXiv:1809.04646 (2018)

  17. Spekkens, R.W.: Evidence for the epistemic view of quantum states: A toy theory. Phys. Rev. A 75, 032110 (2007)

    Article  ADS  Google Scholar 

  18. Wharton, K.B.: A novel interpretation of the Klein-Gordon equation. Found. Phys. 40, 313 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Penrose, R.: Singularities and time-asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press. pp. 581–638 (1979)

    Google Scholar 

  20. Wharton, K.: Quantum states as ordinary information. Information 5, 190 (2014)

    Article  Google Scholar 

  21. Adlam, A.: Quantum mechanics and global determinism. Quanta 7, 40 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wharton, K.: A new class of retrocausal models. Entropy 20, 410 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Foundational Questions Institute, the Fetzer Franklin Fund, and the Peter & Patricia Gruber Foundation for hosting and sponsoring these always-interesting contests. Further thanks are due to those who led to improvements in this published version of the essay: Zeeya Merali, Alyssa Ney, Dean Rickles, and everyone else who commented on the original version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Wharton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wharton, K. (2019). Fundamental is Non-random. In: Aguirre, A., Foster, B., Merali, Z. (eds) What is Fundamental?. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-030-11301-8_14

Download citation

Publish with us

Policies and ethics