Skip to main content

Flow Control in the Model of a Continuous Caster by Using Contactless Inductive Flow Tomography

  • Conference paper
  • First Online:
Materials Processing Fundamentals 2019

Abstract

The global flow pattern of liquid metal in the slab mold of a continuous caster is difficult to control, as it cannot be measured in real-time by conventional methods. Contactless inductive flow tomography (CIFT) can easily provide real-time information about the flow structure (double or single roll) and the angle of the jet coming out of the submerged entry nozzle (SEN) just from the raw sensor data. Furthermore, by solving the underlying linear inverse problem, the full velocity field can be reconstructed. This paper discusses the possibility of applying CIFT for flow pattern recognition in continuous casting , which is then used for setting an electromagnetic brake in order to control the angle of the fluid jet. The control loop will be implemented and developed for the Mini-LIMMCAST model of a continuous caster at Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laing J (1843) US Patent 3023

    Google Scholar 

  2. World Steel Association (2017) Steel statistical yearbook 2017

    Google Scholar 

  3. Dauby PH (2012) Continuous casting: make better steel and more of it! Rev Métall 109:113–136. https://doi.org/10.1051/metal/2012011

    Article  Google Scholar 

  4. Wondrak T, Pal J, Stefani F et al (2018) Visualization of global flow structure in a modified Rayleigh-Bénard setup using contactless inductive flow tomography. Flow Meas Instrum 62:269–280

    Article  Google Scholar 

  5. Ratajczak M, Gundrum T, Stefani F, Wondrak T (2014) Contactless inductive flow tomography: brief history and recent developments in its application to continuous casting. J Sens 2014:1–9. https://doi.org/10.1155/2014/739161

    Article  Google Scholar 

  6. Stefani F, Gerbeth G (2000) On the uniqueness of velocity reconstruction in conducting fluids from measurements of induced electromagnetic fields. Inverse Prob 16:1. https://doi.org/10.1088/0266-5611/16/1/301

    Article  Google Scholar 

  7. Stefani F, Gundrum T, Gerbeth G (2004) Contactless inductive flow tomography. Phys Rev E 70. https://doi.org/10.1103/PhysRevE.70.056306

  8. Wondrak T, Stefani F, Gundrum T, Gerbeth G (2009) Some methodological improvements of the contactless inductive flow tomography. Int J Appl Electromagnet Mech 30:255–264. https://doi.org/10.3233/JAE-2009-1026

    Article  Google Scholar 

  9. Wondrak T, Galindo V, Gerbeth G et al (2010) Contactless inductive flow tomography for a model of continuous steel casting. Meas Sci Technol 21:045402. https://doi.org/10.1088/0957-0233/21/4/045402

    Article  CAS  Google Scholar 

  10. Ratajczak M, Wondrak T, Stefani F (2016) A gradiometric version of contactless inductive flow tomography: theory and first applications. Philos Trans A Math Phys Eng Sci 374. https://doi.org/10.1098/rsta.2015.0330

    Article  Google Scholar 

  11. Zhang L, Thomas BG (2003) State of the art in evaluation and control of steel cleanliness. ISIJ Int 43:271–291. https://doi.org/10.2355/isijinternational.43.271

    Article  CAS  Google Scholar 

  12. Gerber HL (1997) Electromagnetic processing of liquid steel. IEEE Trans Ind Appl 33:801–806. https://doi.org/10.1109/28.585873

    Article  Google Scholar 

  13. Haiqi Y, Baofeng W, Huiqin L, Jianchao L (2008) Influence of electromagnetic brake on flow field of liquid steel in the slab continuous casting mold. J Mater Process Technol 202:179–187. https://doi.org/10.1016/j.jmatprotec.2007.08.054

    Article  CAS  Google Scholar 

  14. Cukierski K, Thomas BG (2008) Flow control with local electromagnetic braking in continuous casting of steel slabs. Metall Mater Trans B 39:94–107. https://doi.org/10.1007/s11663-007-9109-3

    Article  CAS  Google Scholar 

  15. Timmel K, Miao X, Lucas D et al (2010) Experimental and numerical modelling of the steel flow in a continuous casting mould under the influence of a transverse DC magnetic field. Magnetohydrodynamics 46:437–448

    Article  Google Scholar 

  16. Harada H, Toh T, Ishii T et al (2001) Effect of magnetic field conditions on the electromagnetic braking efficiency. ISIJ Int 41:1236–1244. https://doi.org/10.2355/isijinternational.41.1236

    Article  CAS  Google Scholar 

  17. Dekemele K, Ionescu C-M, De Doncker M, De Keyser R (2016) Closed loop control of an electromagnetic stirrer in the continuous casting process. 2016 European Control Conference (ECC). IEEE, Aalborg, pp 61–66

    Chapter  Google Scholar 

  18. Romanowski A, Grudzien K, Williams RA (2005) A review of data analysis methods for electrical industrial process tomography applications. 4th World Congress on Industrial Process Tomography 916–921

    Google Scholar 

  19. Seppänen A, Voutilainen A, Kaipio JP (2009) State estimation in process tomography—reconstruction of velocity fields using EIT. Inverse Prob 25(8):085009

    Article  Google Scholar 

  20. Timmel K, Eckert S, Gerbeth G et al (2010) Experimental modeling of the continuous casting process of steel using low melting point metal alloys—the LIMMCAST program. ISIJ Int 50:1134–1141. https://doi.org/10.2355/isijinternational.50.1134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 764902 (TOMOCON—www.tomocon.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Glavinić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glavinić, I. et al. (2019). Flow Control in the Model of a Continuous Caster by Using Contactless Inductive Flow Tomography. In: Lambotte, G., Lee, J., Allanore, A., Wagstaff, S. (eds) Materials Processing Fundamentals 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05728-2_5

Download citation

Publish with us

Policies and ethics