Skip to main content

Characterization of Sensorized Porous 3D Gelatin/Chitosan Scaffolds Via Bio-impedance Spectroscopy

  • Conference paper
  • First Online:
  • 1237 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 539))

Abstract

Conductive scaffolds are highly used in tissue engineering for bone defect, nerve regeneration, cardiac tissue constructs and many others. Currently, most methods for monitoring cell activities on scaffolds are destructive and invasive such as histological analysis. The research aimed at sensorizing and characterizing a porous gelatin/chitosan scaffold, hence this “Intelligent Scaffold” can behave as a biosensor for evaluating cell behaviour (cell adhesion, proliferation) along with directing cellular growth. Thus, in this research, three-dimensional (3D) gelatin based scaffold has been transformed into conductive scaffold and both the scaffolds are characterized and compared in terms of their electrical conductivity. Carbon black has been used as a doping material to fabricate a Carbon-Gelatin composite conductive scaffold. The scaffolds are prepared by Freeze drying method and carbon black has been homogeneously embedded throughout the gelatin matrix. The scaffold behaviour was characterized by Bio-impedance Spectroscopy method. The preliminary experimental results showed that the conductivity of carbon-gelatin/chitosan scaffold increases around 10 times as compared to simple gelatin scaffold. Thus, these results elucidated the importance of carbon black clustering for development of a conductive network. This shows that carbon black provides conducting path and hence in future, even a small change of cellular activity can be determined by impedance fluctuation within the scaffold.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yang, F., Murugan, R., Ramakrishna, S., et al.: Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25, 1891–1900 (2004)

    Article  Google Scholar 

  2. Subramanian, A., Krishnan, U.M., Sethuraman, S.: Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16, 108 (2009)

    Article  Google Scholar 

  3. Khan, M.N., Islam, J.M.M., Khan, M.A.: Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. J. Biomed. Mater. Res. Part A 2012(100A), 3020–3028 (2012)

    Article  Google Scholar 

  4. Fowler, B.O., Moreno, E.C., Brown, W.E.: Infra-red spectra of hydroxyl-apatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch. Oral Biol. 11(477), 492 (1966)

    Google Scholar 

  5. Rey, C., Shimizu, M., Collins, B., Glimcher, M.J.: Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the upsilon 4 PO4 domain. Calcif. Tissue Int. 46, 384–394 (1990)

    Article  Google Scholar 

  6. Walters, M.A., Leung, Y.C., Blumenthal, N.C., LeGeros, R.Z., Konsker, K.A.: A Raman and infrared spectroscopic investigation of biological hydroxyapatite. J. Inorg. Biochem. 39(19), 3–200 (1990)

    Google Scholar 

  7. Haydar, U., Islam, J.M.M.Z., Khan, M.A., Khan, R.A.: Physico-mechanical properties of wound dressing material and its biomedical applica-tion. J. Mech. Beh. Biomed. Mater. 4, 1369–1375 (2011)

    Article  Google Scholar 

  8. Mao, J.S., Liu, H.F., Yin, Y.J., Yao, K.D.: The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials 24, 1621–1629 (2003)

    Article  Google Scholar 

  9. Cheng, M., Deng, J., Yang, F., Gong, Y., Zhao, N., Zhang, X.: Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 24, 2871–2880 (2003)

    Article  Google Scholar 

  10. Hajiabbas, M., Mashayekhan, S., Nazaripouya, A., Naji, M., Hunkeler, D., RajabiZeleti, S., Sharifiaghdas, F.: Artif. Cells Nanomed. Biotechnol. (2013). http://dx.doi.org/10.3109/21691401.2013.852101

  11. Jridi, M., Hajji, S., Ayed, H.B., Lassoued, I., Mbarek, A., Kammoun, M., Souissi, N., Nasri, M.: Int. J. Biol. Macromol. 67, 373 (2014)

    Article  Google Scholar 

  12. Sarem, M., Moztarzadeh, F., Mozafari, M., Prasad Shastri, V.: Mater. Sci. Eng. C 33, 4777 (2013)

    Google Scholar 

  13. Guan, S., Zhang, X.L., Lin, X.M., Liu, T.Q., Ma, X.H., Cui, Z.F.: J. Biomater. Sci. Polym. Ed. 24, 999 (2013)

    Article  Google Scholar 

  14. Martin-Lopez, E., Alonso, F.R., Nieto-Diaz, M., Nieto-Sampedro, M.: J. Biomater. Sci. Polym. Ed. 23, 207 (2012)

    Article  Google Scholar 

  15. Keong, L.C., Halim, A.S.: In vitro models in biocompatibility assessment for biomedical-grade chitosan derivatives in wound management. Int. J. Mol. Sci. 10, 1300–1313 (2009)

    Article  Google Scholar 

  16. Hirano, S., Midorikawa, T.: Novel method for the preparation of N-acylchitosan fiber and N-acylchitosan-cellulose fiber. Biomaterials 19, 293–297 (1998)

    Article  Google Scholar 

  17. Li, Q., Dunn, E.T., Grandmaison, E.W., Goosen, M.F.A.: Applications and proper ties of chitosan. J. Bioact. Compat. Polym. 71, 370–397 (1992)

    Article  Google Scholar 

  18. Majeti, N.V.: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000)

    Article  Google Scholar 

  19. Suh, J.K., Matthew, H.W.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21, 2589–2598 (2000)

    Article  Google Scholar 

  20. Zhang, Z., Rouabhia, M., Wang, Z., et al.: Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif. Organs 31, 13–22 (2007)

    Article  Google Scholar 

  21. Martins, A.M., Eng, G., Caridade, S.G., Mano, J.F., Reis, R.L., Vunjak-Novakovic, G.: Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15(2), 635–643

    Article  Google Scholar 

  22. Shahini, A., Yazdimamaghani, M., Walker, K.J., Eastman, M.A., Hatami-Marbini, H., Smith, B.J., Ricci, J.L., Madihally, S.V., Vashaee, D., Tayebi, L.: 3D conductive nanocomposite scaffold for bone tissue engineering. Int. J. Nanomed. 9, 167–181 (2014)

    Google Scholar 

  23. Huang, J.C.: Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 21(4), 299–313 (2002)

    Article  Google Scholar 

  24. Zois, H., Apekis, L., Mamunya, Y.P.: Dielectric properties and morphology of polymer composites filled with dispersed iron. J. Appl. Polym. Sci. 88(13), 3013–3020 (2003)

    Article  Google Scholar 

  25. Tanasa, F., Zanoaga, M., Mamunya, Y.: Conductive thermoplastic polymer nanocomposites with ultralow percolation threshold. Sci. Res. Educ. Air Force-AFASES 2 (2015)

    Google Scholar 

  26. Doroski, D.M., Brink, K.S., Temenoff, J.S.: Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials 28, 187 (2007)

    Article  Google Scholar 

  27. Smith, L.E., Smallwood, R., Macneil, S.: A comparison of imaging methodologies for 3D tissue engineering. Microsc. Res. Tech. 73(12), 1123–1133 (2010). https://doi.org/10.1002/jemt.20859

    Article  Google Scholar 

  28. Daza, P., Olmo, A., Cañete, D., Yúfera, A.: Monitoring living cell assays with bio-impedance sensors. Sens. Actuators B Chem. 176, 605–610 (2013)

    Article  Google Scholar 

  29. Lei, K.F., Wu, M.H., Liao, P.Y., Chen, Y.M., Pan, T.M.: Development of a micro-scale perfusion 3D cell culture biochip with an incorporated electrical impedance measurement scheme for the quantification of cell number in a 3D cell culture construct. Microfluid. Nanofluid. 12, 117–125 (2012)

    Article  Google Scholar 

  30. Lei, K.F., Wu, M.H., Hsu, C.W., Chen, Y.D.: Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Biosens. Bioelectron. 51, 16–21 (2014)

    Article  Google Scholar 

  31. Weijenborg, P.W., Rohof, W.O.A., Akkermans, L.M.A., Verheij, J., Smout, A.J.P.M., Bredenoord, A.J.: Electrical tissue impedance spectroscopy: a novel device to measure esophageal mucosal integrity changes during endoscopy. Neurogastroenterol. Motil. 25, 574–e458 (2013)

    Article  Google Scholar 

  32. Giaever, I., Keese, C.R.: Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. U.S.A. 88(17), 7896–7900 (1991)

    Article  Google Scholar 

  33. Lind, R., Connolly, P., Wilkinson, C.D.W., Breckenridge, L.J., Dow, J.A.T.: Single cell mobility and adhesion monitoring using extracellular electrodes. Biosens. Bioelectron. 6, 359–367 (1991)

    Article  Google Scholar 

  34. Wegener, J., Keese, C.R., Giaever, I.: Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259(1), 158–166 (2000)

    Article  Google Scholar 

  35. Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., Wolf, B.: Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens. Bioelectron. 12(1), 29–41 (1997)

    Article  Google Scholar 

  36. Dey, K., Agnelli, S., Serzanti, M., Ginestra, P., Scarì, G., Dell’Era, P., Sartore, L.: Preparation and properties of high performance gelatin based hydrogels with chitosan or hydroxyethyl cellulose for tissue engineering applications. Int. J. Polym. Mater. Polym. Biomater. (2018). https://doi.org/10.1080/00914037.2018.1429439

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Serpelloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, M.A., Lopomo, N.F., Serpelloni, M., Sardini, E., Sartore, L. (2019). Characterization of Sensorized Porous 3D Gelatin/Chitosan Scaffolds Via Bio-impedance Spectroscopy. In: Andò, B., et al. Sensors. CNS 2018. Lecture Notes in Electrical Engineering, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-030-04324-7_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04324-7_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04323-0

  • Online ISBN: 978-3-030-04324-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics