Skip to main content

Boundary Regularity of Mass-Minimizing Integral Currents and a Question of Almgren

  • Chapter
  • First Online:
2017 MATRIX Annals

Part of the book series: MATRIX Book Series ((MXBS,volume 2))

Abstract

This short note is the announcement of a forthcoming work in which we prove a first general boundary regularity result for area-minimizing currents in higher codimension, without any geometric assumption on the boundary, except that it is an embedded submanifold of a Riemannian manifold, with a mild amount of smoothness (\(C^{3, a_0}\) for a positive a 0 suffices). Our theorem allows to answer a question posed by Almgren at the end of his Big Regularity Paper. In this note we discuss the ideas of the proof and we also announce a theorem which shows that the boundary regularity is in general weaker that the interior regularity. Moreover we remark an interesting elementary byproduct on boundary monotonicity formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allard, W.K.: On boundary regularity for Plateau’s problem. Bull. Am. Math. Soc. 75, 522–523 (1969). https://doi.org/10.1090/S0002-9904-1969-12229-9

    Article  MathSciNet  Google Scholar 

  2. Allard, W.K.: On the first variation of a varifold: boundary behavior. Ann. Math. (2) 101, 418–446 (1975)

    Google Scholar 

  3. Almgren, F.J.J.: Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem. Ann. Math. (2) 84, 277–292 (1966)

    Google Scholar 

  4. Almgren, J.F.J.: Almgren’s big regularity paper. In: World Scientific Monograph Series in Mathematics, vol. 1. World Scientific Publishing, River Edge (2000)

    Google Scholar 

  5. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969)

    Article  MathSciNet  Google Scholar 

  6. Chang, S.X.: Two-dimensional area minimizing integral currents are classical minimal surfaces. J. Am. Math. Soc. 1(4), 699–778 (1988). http://dx.doi.org/10.2307/1990991

    MathSciNet  MATH  Google Scholar 

  7. De Giorgi, E.: Frontiere orientate di misura minima. In: Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960–61. Editrice Tecnico Scientifica, Pisa (1961)

    Google Scholar 

  8. De Giorgi, E.: Una estensione del teorema di Bernstein. Ann. Scuola Norm. Sup. Pisa 19(3), 79–85 (1965)

    MathSciNet  MATH  Google Scholar 

  9. De Lellis, C., Spadaro, E.: Q-valued functions revisited. Mem. Am. Math. Soc. 211(991), vi+79 (2011). http://dx.doi.org/10.1090/S0065-9266-10-00607-1

  10. De Lellis, C., Spadaro, E.: Regularity of area minimizing currents I: gradient L p estimates. Geom. Funct. Anal. 24(6), 1831–1884 (2014). https://doi.org/10.1007/s00039-014-0306-3

    Article  MathSciNet  Google Scholar 

  11. De Lellis, C., Spadaro, E.: Multiple valued functions and integral currents. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 14(4), 1239–1269 (2015)

    Google Scholar 

  12. De Lellis, C., Spadaro, E.: Regularity of area minimizing currents II: center manifold. Ann. Math. (2) 183(2), 499–575 (2016). https://doi.org/10.4007/annals.2016.183.2.2

  13. De Lellis, C., Spadaro, E.: Regularity of area minimizing currents III: blow-up. Ann. Math. (2) 183(2), 577–617 (2016). https://doi.org/10.4007/annals.2016.183.2.3

  14. De Lellis, C., Spadaro, E., Spolaor, L.: Regularity theory for 2 dimensional almost minimal currents: blow-up. J. Differ. Geom. (2015). Available at arXiv:1508.05510

    Google Scholar 

  15. De Lellis, C., Spadaro, E., Spolaor, L.: Regularity theory for 2-dimensional almost minimal currents II: Branched center manifold. Ann. PDE 3(2), Art. 18, 85 (2017). https://doi.org/10.1007/s40818-017-0035-7

  16. De Lellis, C., Spadaro, E., Spolaor, L.: Uniqueness of tangent cones for two-dimensional almost-minimizing currents. Comm. Pure Appl. Math. 70(7), 1402–1421 (2017). https://doi.org/10.1002/cpa.21690

    Article  MathSciNet  Google Scholar 

  17. De Lellis, C., Spadaro, E., Spolaor, L.: Regularity theory for 2-dimensional almost minimal currents I: Lipschitz approximation. Trans. Am. Math. Soc. 370(3), 1783–1801 (2018). https://doi.org/10.1090/tran/6995

    Article  MathSciNet  Google Scholar 

  18. De Lellis, C., De Philippis, G., Hirsch, J., Massaccesi, A.: On the boundary behavior of mass-minimizing integral currents (2018). Available at arXiv:1809.09457

    Google Scholar 

  19. Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

    Google Scholar 

  20. Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. (2) 72, 458–520 (1960)

    Google Scholar 

  21. Fleming, W.H.: On the oriented Plateau problem. Rend. Circ. Mat. Palermo (2) 11, 69–90 (1962)

    Google Scholar 

  22. Grüter, M., Jost, J.: Allard type regularity results for varifolds with free boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13(1), 129–169 (1986)

    Google Scholar 

  23. Hardt, R., Simon, L.: Boundary regularity and embedded solutions for the oriented Plateau problem. Ann. Math. (2) 110(3), 439–486 (1979). http://dx.doi.org/10.2307/1971233

  24. Hardt, R.M.: On boundary regularity for integral currents or flat chains modulo two minimizing the integral of an elliptic integrand. Comm. Partial Differential Equations 2(12), 1163–1232 (1977). https://doi.org/10.1080/03605307708820058

    Article  MathSciNet  Google Scholar 

  25. Hirsch, J.: Boundary regularity of Dirichlet minimizing Q-valued functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 16(4), 1353–1407 (2016)

    Google Scholar 

  26. Hirsch, J.: Examples of holomorphic functions vanishing to infinite order at the boundary. Trans. Am. Math. Soc. 370, 4249–4271 (2018)

    Article  MathSciNet  Google Scholar 

  27. Naber, A., Valtorta, D.: The singular structure and regularity of stationary and minimizing varifolds. ArXiv e-prints (2015)

    Google Scholar 

  28. Simon, L.: Rectifiability of the singular sets of multiplicity 1 minimal surfaces and energy minimizing maps. In: Surveys in differential geometry, vol. II (Cambridge, MA, 1993), pp. 246–305. Int. Press, Cambridge (1995)

    Google Scholar 

  29. Simons, J.: Minimal varieties in riemannian manifolds. Ann. Math. (2) 88, 62–105 (1968)

    Google Scholar 

  30. Spolaor, L.: Almgren’s type regularity for Semicalibrated Currents. ArXiv e-prints (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camillo De Lellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lellis, C.D., Philippis, G.D., Hirsch, J., Massaccesi, A. (2019). Boundary Regularity of Mass-Minimizing Integral Currents and a Question of Almgren. In: de Gier, J., Praeger, C., Tao, T. (eds) 2017 MATRIX Annals. MATRIX Book Series, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-04161-8_14

Download citation

Publish with us

Policies and ethics