Skip to main content

Blow-Up Profile of Rotating 2D Focusing Bose Gases

  • Conference paper
  • First Online:
Book cover Macroscopic Limits of Quantum Systems (MaLiQS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 270))

Included in the following conference series:

Abstract

We consider the Gross–Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation \(\Omega \). First, we study the behavior of the ground state when the coupling constant approaches \(a_*\), the critical strength of the cubic nonlinearity for the focusing nonlinear Schrödinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo–Nirenberg solution. In particular, the blow-up scenario is independent of \(\Omega \), to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141–156) in the nonrotating case. In a second part, we consider the many-particle Hamiltonian for N bosons, interacting with a potential rescaled in the mean-field manner \(-a_NN^{2\beta -1}w(N^\beta x)\), with \(w\geqslant 0\) a positive function such that \(\int _{{\mathbb R }^2}w(x)\,dx=1\). Assuming that \(\beta <1/2\) and that \(a_N\rightarrow a_*\) sufficiently slowly, we prove that the many-body system is fully condensed on the Gross–Pitaevskii ground state in the limit \(N\rightarrow \infty \).

Dedicated to Herbert Spohn, on the occasion of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bounding the full kinetic energy from below by that of the one-body density \(\sqrt{\rho _{\Psi _N}}\).

  2. 2.

    There is no blow-up then, but one might want to adapt the method to obtain convergence of density matrices to the stable GP minimizers.

References

  1. Aftalion, A.: Vortices in Bose–Einstein Condensates. Progress in Nonlinear Differential Equations and Their Applications, vol. 67. Springer, Berlin (2006)

    Google Scholar 

  2. Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations. Princeton University Press, Princeton (1982)

    Google Scholar 

  3. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  4. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  5. Baym, G., Pethick, C.J.: Ground-state properties of magnetically trapped Bose-condensed Rubidium gas. Phys. Rev. Lett. 76, 6–9 (1996)

    Article  Google Scholar 

  6. Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1690 (1995)

    Article  Google Scholar 

  7. Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)

    Article  MathSciNet  Google Scholar 

  8. Carles, R.: Critical nonlinear Schrödinger equations with and without harmonic potential. Math. Models Methods Appl. Sci. 12, 1513–1523 (2002)

    Article  MathSciNet  Google Scholar 

  9. Carr, L.D., Clark, C.W.: Vortices in attractive Bose-Einstein condensates in two dimensions. Phys. Rev. Lett. 97, 010403 (2006)

    Article  Google Scholar 

  10. Chang, S.-M., Gustafson, S., Nakanishi, K., Tsai, T.-P.: Spectra of linearized operators for NLS solitary waves. SIAM J. Math. Anal. 39, 1070–1111 (2008)

    Article  MathSciNet  Google Scholar 

  11. Chen, X., Holmer, J.: The rigorous derivation of the 2D cubic focusing NLS from quantum many-body evolution. Int. Math. Res. Not. IMRN, 4173–4216 (2017)

    Google Scholar 

  12. Chiribella, G.: On quantum estimation, quantum cloning and finite quantum de Finetti theorems. Theory of Quantum Computation, Communication, and Cryptography. Lecture Notes in Computer Science, vol. 6519. Springer, Berlin (2011)

    Chapter  Google Scholar 

  13. Christandl, M., König, R., Mitchison, G., Renner, R.: One-and-a-half quantum de Finetti theorems. Commun. Math. Phys. 273, 473–498 (2007)

    Article  MathSciNet  Google Scholar 

  14. Collin, A., Lundh, E., Suominen, K.-A.: Center-of-mass rotation and vortices in an attractive Bose gas. Phys. Rev. A 71, 023613 (2005)

    Article  Google Scholar 

  15. Cooper, N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)

    Article  Google Scholar 

  16. Cornell, E.A., Wieman, C.E.: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002)

    Article  Google Scholar 

  17. Correggi, M., Pinsker, F., Rougerie, N., Yngvason, J.: Rotating superfluids in anharmonic traps: from vortex lattices to giant vortices. Phys. Rev. A 84, 053614 (2011)

    Article  Google Scholar 

  18. Dalfovo, F., Stringari, S.: Bosons in anisotropic traps: ground state and vortices. Phys. Rev. A 53, 2477–2485 (1996)

    Article  Google Scholar 

  19. Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  Google Scholar 

  20. de Finetti, B.: Funzione caratteristica di un fenomeno aleatorio. Atti della R. Accademia Nazionale dei Lincei, Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali (1931)

    Google Scholar 

  21. de Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7, 1–68 (1937)

    Google Scholar 

  22. Deng, Y., Guo, Y., Lu, L.: On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions. Calc. Var. Partial Differ. Equ. 54, 99–118 (2015)

    Article  MathSciNet  Google Scholar 

  23. Diaconis, P., Freedman, D.: Finite exchangeable sequences. Ann. Probab. 8, 745–764 (1980)

    Article  MathSciNet  Google Scholar 

  24. Donley, E.A., Claussen, N.R., Cornish, S.L., Roberts, J.L., Cornell, E.A., Wieman, C.E.: Dynamics of collapsing and exploding Bose-Einstein condensates. Nature 412, 295–299 (2001)

    Article  Google Scholar 

  25. Fannes, M., Vandenplas, C.: Finite size mean-field models. J. Phys. A 39, 13843–13860 (2006)

    Article  MathSciNet  Google Scholar 

  26. Fannes, M., Spohn, H., Verbeure, A.: Equilibrium states for mean field models. J. Math. Phys. 21, 355–358 (1980)

    Article  MathSciNet  Google Scholar 

  27. Fetter, A.: Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)

    Article  Google Scholar 

  28. Frank, R.L.: Ground states of semi-linear PDE. Lecture notes from the “Summerschool on Current Topics in Mathematical Physics”, CIRM Marseille (2013)

    Google Scholar 

  29. Gerton, J.M., Strekalov, D., Prodan, I., Hulet, R.G.: Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions. Nature 408, 692–695 (2000)

    Article  Google Scholar 

  30. Guo, Y., Seiringer, R.: On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  31. Guo, Y., Zeng, X., Zhou, H.-S.: Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 809–828 (2016)

    Article  MathSciNet  Google Scholar 

  32. Harrow, A.: The church of the symmetric subspace (2013)

    Google Scholar 

  33. Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)

    Article  MathSciNet  Google Scholar 

  34. Hudson, R.L., Moody, G.R.: Locally normal symmetric states and an analogue of de Finetti’s theorem. Z. Wahrscheinlichkeitstheor. und Verw. Gebiete 33, 343–351 (1975/1976)

    Google Scholar 

  35. Jeblick, M., Pickl, P.: Derivation of the time dependent two dimensional focusing NLS equation (2017). arXiv:1707.06523

  36. Ketterle, W.: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Article  Google Scholar 

  37. Kiessling, M.K.-H.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure Appl. Math. 46, 27–56 (1993)

    Article  MathSciNet  Google Scholar 

  38. Kiessling, M.K.-H., Spohn, H.: A note on the eigenvalue density of random matrices. Commun. Math. Phys. 199, 683–695 (1999)

    Article  MathSciNet  Google Scholar 

  39. König, R., Renner, R.: A de Finetti representation for finite symmetric quantum states. J. Math. Phys. 46, 122108 (2005)

    Article  MathSciNet  Google Scholar 

  40. Lévy-Leblond, J.-M.: Nonsaturation of gravitational forces. J. Math. Phys. 10, 806–812 (1969)

    Article  Google Scholar 

  41. Lewin, M.: Mean-field limit of Bose systems: rigorous results. In: Proceedings of the International Congress of Mathematical Physics (2015)

    Google Scholar 

  42. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)

    Article  MathSciNet  Google Scholar 

  43. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of nonlinear Gibbs measures from many-body quantum mechanics. J. École Polytech. Math. 2, 65–115 (2015)

    Article  MathSciNet  Google Scholar 

  44. Lewin, M., Nam, P.T., Rougerie, N.: Remarks on the quantum de Finetti theorem for bosonic systems. Appl. Math. Res. Express (AMRX), 48–63 (2015)

    Google Scholar 

  45. Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68, 413–471 (2015)

    Article  MathSciNet  Google Scholar 

  46. Lewin, M., Nam, P.T., Rougerie, N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases. Trans. Am. Math. Soc. 368, 6131–6157 (2016)

    Article  Google Scholar 

  47. Lewin, M., Thành Nam, P., Rougerie, N.: A note on 2D focusing many-boson systems. Proc. Am. Math. Soc. 145, 2441–2454 (2017)

    Article  MathSciNet  Google Scholar 

  48. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  49. Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  50. Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)

    Article  MathSciNet  Google Scholar 

  51. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Oberwolfach Seminars. Birkhäuser, Basel (2005)

    Google Scholar 

  52. Lundh, E., Collin, A., Suominen, K.-A.: Rotational states of Bose gases with attractive interactions in anharmonic traps. Phys. Rev. Lett. 92, 070401 (2004)

    Article  Google Scholar 

  53. Maeda, M.: On the symmetry of the ground states of nonlinear Schrödinger equation with potential. Adv. Nonlinear Stud. 10, 895–925 (2010)

    Article  MathSciNet  Google Scholar 

  54. McLeod, K.: Uniqueness of positive radial solutions of \(\Delta u+f(u)=0\) in \({ R}^n\). II. Trans. Am. Math. Soc. 339, 495–505 (1993)

    Google Scholar 

  55. Messer, J., Spohn, H.: Statistical mechanics of the isothermal Lane-Emden equation. J. Stat. Phys. 29, 561–578 (1982)

    Article  MathSciNet  Google Scholar 

  56. Mottelson, B.: Yrast spectra of weakly interacting Bose-Einstein condensates. Phys. Rev. Lett. 83, 2695–2698 (1999)

    Article  Google Scholar 

  57. Mueller, E.J., Baym, G.: Finite-temperature collapse of a Bose gas with attractive interactions. Phys. Rev. A 62, 053605 (2000)

    Article  Google Scholar 

  58. Nam, P., Napiórkowski, M.: Norm approximation for many-body quantum dynamics: focusing case in low dimensions (2017). arXiv:1710.09684

  59. Nam, P.T., Rougerie, N., Seiringer, R.: Ground states of large Bose systems: the Gross-Pitaevskii limit revisited (2015)

    Google Scholar 

  60. Pethick, C.J., Pitaevskii, L.P.: Criterion for Bose-Einstein condensation for particles in traps. Phys. Rev. A 62, 033609 (2000)

    Article  Google Scholar 

  61. Petz, D., Raggio, G.A., Verbeure, A.: Asymptotics of Varadhan-type and the Gibbs variational principle. Commun. Math. Phys. 121, 271–282 (1989)

    Article  MathSciNet  Google Scholar 

  62. Phan, T.V.: Blow-up profile of Bose-Einstein condensate with singular potentials. J. Math. Phys. 58, 072301, 10 (2017)

    Article  MathSciNet  Google Scholar 

  63. Raggio, G.A., Werner, R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62, 980–1003 (1989)

    MathSciNet  MATH  Google Scholar 

  64. Rougerie, N.: De Finetti theorems, mean-field limits and Bose-Einstein condensation (2015)

    Google Scholar 

  65. Rougerie, N.: Some contributions to many-body quantum mathematics. Habilitation thesis, Université de Grenoble-Alpes (2016). arXiv:1607.03833

  66. Saito, H., Ueda, M.: Split-merge cycle, fragmented collapse, and vortex disintegration in rotating Bose-Einstein condensates with attractive interactions. Phys. Rev. A 69, 013604 (2004)

    Article  Google Scholar 

  67. Sakaguchi, H., Malomed, B.A.: Localized matter-wave patterns with attractive interaction in rotating potentials. Phys. Rev. A 78, 063606 (2008)

    Article  Google Scholar 

  68. Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3, 445–455 (1981)

    Article  MathSciNet  Google Scholar 

  69. Størmer, E.: Symmetric states of infinite tensor products of \(C^{\ast } \)-algebras. J. Funct. Anal. 3, 48–68 (1969)

    Google Scholar 

  70. Ueda, M., Leggett, A.J.: Macroscopic quantum tunneling of a Bose-Einstein condensate with attractive interaction. Phys. Rev. Lett. 80, 1576–1579 (1998)

    Article  Google Scholar 

  71. van den Berg, M., Lewis, J.T., Pulè, J.V.: The large deviation principle and some models of an interacting Boson gas. Commun. Math. Phys. 118, 61–85 (1988)

    Article  MathSciNet  Google Scholar 

  72. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  Google Scholar 

  73. Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)

    Article  MathSciNet  Google Scholar 

  74. Werner, R.F.: Large deviations and mean-field quantum systems. Quantum Probability and Related Topics, QP-PQ, VII, pp. 349–381. World Scientific Publishing, River Edge (1992)

    Chapter  Google Scholar 

  75. Wilkin, N.K., Gunn, J.M.F., Smith, R.A.: Do attractive Bosons condense? Phys. Rev. Lett. 80, 2265 (1998)

    Article  Google Scholar 

  76. Zhang, J.: Stability of attractive Bose-Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)

    Article  MathSciNet  Google Scholar 

  77. Zhang, J.: Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential. Commun. Partial Differ. Equ. 30, 1429–1443 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

It is our pleasure to dedicate this paper to Herbert Spohn, on the occasion of his 70th birthday. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements MDFT No 725528 and CORFRONMAT No 758620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lewin .

Editor information

Editors and Affiliations

Appendix A. Extension to Anharmonic Potentials

Appendix A. Extension to Anharmonic Potentials

The arguments given in this paper can be extended in various directions. One possibility is to consider anharmonic potentials. For completeness, we state here the corresponding result when the external potential is chosen in the form

$$V(x)=c_0|x|^s$$

but we expect similar results when V has a unique minimizer and behaves like this in a neighborhood of this point, similarly to what was done in [30]. When \(s\ne 2\) the limit \(a\rightarrow a_*\) requires to have \(\Omega =0\). Although a stronger confinement \(s>2\) can control the rotating gas at infinity, it is not sufficient to control rotating effects near the blow-up point. So we do not consider any rotation here. The many-particle Hamiltonian then takes the form

$$\begin{aligned} \widetilde{H}_N = \sum _{j=1} ^N \left( -\Delta _{x_j} + c_0|x_j|^s\right) - \frac{a}{N-1} \sum _{1\leqslant i<j \leqslant N}w_N(x_i-x_j). \end{aligned}$$
(A.1)

The following can be proved by arguing exactly as we did for \(s=2\).

Theorem 4.4

(Collapse and condensation of the many-body ground state for anharmonic potentials). Let \(\Omega \equiv 0\), \(s>0\), \(c_0>0\), \(0<\beta <1/2\) and \(a_N=a_*-N^{-\alpha }\) with

$$0<\alpha < \min \left\{ \frac{ \beta (s+2)}{s+3}, \frac{(1-2\beta )(s+2)}{s}\right\} .$$

Let \(\Psi _N\) be the unique ground state of \(\widetilde{H}_N\). Then we have

$$\begin{aligned} \lim _{N \rightarrow \infty } {{\mathrm{\mathrm{Tr}}}}\Big | \gamma _{\Psi _{N} }^{(k)} - |\widetilde{Q}_N^{\otimes k} \rangle \langle \widetilde{Q}_{N}^{\otimes k}| \Big |=0, \end{aligned}$$
(A.2)

for all \(k\in \mathbb {N}\), where \(\widetilde{Q}_N\) is the rescaled Gagliardo–Nirenberg optimizer given by

$$\widetilde{Q}_N(x)= (a_*)^{-1/2}\widetilde{\lambda }(a_*-a_N)^{-\frac{1}{2+s}} Q\left( \widetilde{\lambda }(a_*-a_N)^{-\frac{1}{2+s}} x\right) ,$$

with

$$\widetilde{\lambda }=\left( \frac{s}{2} c_0\int _{{\mathbb R }^2} |x|^s |Q(x)|^2 dx \right) ^{\frac{1}{2+s}}.$$

In addition, we have

$$\begin{aligned} \frac{\min \sigma (\widetilde{H}_N)}{N}= (a_*-a_N)^{\frac{s}{s+2}} \Big ( \frac{\widetilde{\lambda }^2}{a_*}\frac{s+2}{s} + o(1)\Big ). \end{aligned}$$
(A.3)

The right side of (A.3) is of course the expansion of the Gross–Pitaevskii energy, which has already been derived in [30].

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lewin, M., Thành Nam, P., Rougerie, N. (2018). Blow-Up Profile of Rotating 2D Focusing Bose Gases. In: Cadamuro, D., Duell, M., Dybalski, W., Simonella, S. (eds) Macroscopic Limits of Quantum Systems. MaLiQS 2017. Springer Proceedings in Mathematics & Statistics, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-030-01602-9_7

Download citation

Publish with us

Policies and ethics