Skip to main content

Numerical Precession in Variational Discretizations of the Kepler Problem

  • Conference paper
  • First Online:
Discrete Mechanics, Geometric Integration and Lie–Butcher Series

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 267))

  • 558 Accesses

Abstract

Kepler’s first law states that the orbit of a point mass with negative energy in a classical gravitational potential is an ellipse with one of its foci at the gravitational center. In numerical simulations of this system one often observes a slight precession of the ellipse around the gravitational center. Using the Lagrangian structure of modified equations and a perturbative version of Noether’s theorem, we provide leading order estimates of this precession for the implicit MidPoint rule (MP) and the Störmer-Verlet method (SV). Based on those estimates we construct some new numerical integrators that perform significantly better than MP and SV on the Kepler problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chartier, P., Hairer, E., Vilmart, G.: Numerical integrators based on modified differential equations. Math. Comput. 76(260), 1941–1953 (2007)

    Article  MathSciNet  Google Scholar 

  2. Chin, S.A.: Symplectic integrators from composite operator factorizations. Phys. Lett. A 226(6), 344–348 (1997)

    Article  MathSciNet  Google Scholar 

  3. Chin, S.A.: Physics of symplectic integrators: Perihelion advances and symplectic corrector algorithms. Phys. Rev. E 75(3), 036–701 (2007)

    Google Scholar 

  4. Chin, S.A., Kidwell, D.W.: Higher-order force gradient symplectic algorithms. Phys. Rev. E 62(6), 8746 (2000)

    Article  MathSciNet  Google Scholar 

  5. Curtis, L.J., Haar, R.R., Kummer, M.: An expectation value formulation of the perturbed Kepler problem. Am. J. Phys. 55(7), 627–631 (1987)

    Article  Google Scholar 

  6. Forest, E., Ruth, R.D.: Fourth order symplectic integration. Physica 43(LBL-27662), 105–117 (1989)

    Article  MathSciNet  Google Scholar 

  7. Goldstein, H.: Classical Mechanics. Addison-Wesley Pub, Co (1980)

    Google Scholar 

  8. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer (2006)

    Google Scholar 

  9. Lévy-Leblond, J.M.: Conservation laws for gauge-variant Lagrangians in classical mechanics. Am. J. Phys. 39(5), 502–506 (1971)

    Article  Google Scholar 

  10. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Num. 2001(10), 357–514 (2001)

    Article  MathSciNet  Google Scholar 

  11. Morehead, J.: Visualizing the extra symmetry of the Kepler problem. Am. J. Phys. 73(3), 234–239 (2005)

    Article  Google Scholar 

  12. Noether, E.: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse, Invariante Variationsprobleme 1918, 235–257 (1918)

    Google Scholar 

  13. Olver, P.J.: Applications of Lie Groups to Differential Equations, vol. 107. Springer Science & Business Media (2000)

    Google Scholar 

  14. Rogers, H.H.: Symmetry transformations of the classical Kepler problem. J. Math. Phys. 14(8), 1125–1129 (1973)

    Article  Google Scholar 

  15. Vermeeren, M.: Modified Equations for Variational Integrators Numer. Math. 137(4), 1007–1037 (2017)

    Article  MathSciNet  Google Scholar 

  16. Will, C.M.: Theory and experiment in gravitational physics, vol. 1. Cambridge University Press (1981)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”. The author would like to thank the organizers and participants of the Brainstorming Workshop on New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series for making it an inspiring event.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Vermeeren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vermeeren, M. (2018). Numerical Precession in Variational Discretizations of the Kepler Problem. In: Ebrahimi-Fard, K., Barbero Liñán, M. (eds) Discrete Mechanics, Geometric Integration and Lie–Butcher Series. Springer Proceedings in Mathematics & Statistics, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-030-01397-4_10

Download citation

Publish with us

Policies and ethics