Skip to main content

Hybrid Control of Swarms for Resource Selection

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2018)

Abstract

The design and control of swarm robotics systems generally relies on either a fully self-organizing approach or a completely centralized one. Self-organization is leveraged to obtain systems that are scalable, flexible and fault-tolerant at the cost of reduced controllability and performance. Centralized systems, instead, are easier to design and generally perform better than self-organizing ones but come with the risks associated with a single point of failure. We investigate a hybrid approach to the control of robot swarms in which a part of the swarm acts as a control entity, estimating global information, to influence the remaining robots in the swarm and increase performance. We investigate this concept by implementing a consensus achievement system tasked with choosing the best of two resource locations. We show (i) how estimating and leveraging global information impacts the decision-making process and (ii) how the proposed hybrid approach improves performance over a fully self-organizing approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the paper we use the terms ‘robot opinion’ and ‘robot preference’ interchangeably.

  2. 2.

    A swarm is connected if a path of communicating robots can be found between any two robots in the swarm.

References

  1. Antonelli, G., Chiaverini, S.: Kinematic control of platoons of autonomous vehicles. IEEE Trans. Robot. 22(6), 1285–1292 (2006)

    Article  Google Scholar 

  2. Berman, S., Halasz, A., Hsieh, M., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009)

    Article  Google Scholar 

  3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  5. Brutschy, A., Scheidler, A., Ferrante, E., Dorigo, M., Birattari, M.: “Can ants inspire robots?” Self-organized decision making in robotic swarms. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4272–4273. IEEE Press (2012)

    Google Scholar 

  6. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Auton. Agents Multi-Agent Syst. 28(1), 101–125 (2014)

    Article  Google Scholar 

  7. Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S., Dorigo, M.: Artificial pheromone for path selection by a foraging swarm of robots. Biol. Cybern. 103(5), 339–352 (2010)

    Article  Google Scholar 

  8. De La Cruz, C., Carelli, R.: Dynamic modeling and centralized formation control of mobile robots. In: IECON 2006–32nd Annual Conference on IEEE Industrial Electronics, pp. 3880–3885. IEEE (2006)

    Google Scholar 

  9. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)

    Article  Google Scholar 

  10. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-organized flocking with a mobile robot swarm: a novel motion control method. Adapt. Behav. 20(6), 460–477 (2012)

    Article  Google Scholar 

  11. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)

    Article  Google Scholar 

  12. Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., Birattari, M.: Analysing an evolved robotic behaviour using a biological model of collegial decision making. In: Ziemke, T., Balkenius, C., Hallam, J. (eds.) SAB 2012. LNCS (LNAI), vol. 7426, pp. 381–390. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33093-3_38

    Chapter  Google Scholar 

  13. Gutiérrez, Á., Campo, A., Monasterio-Huelin, F., Magdalena, L., Dorigo, M.: Collective decision-making based on social odometry. Neural Comput. Appl. 19(6), 807–823 (2010)

    Article  Google Scholar 

  14. Hausman, K., Müller, J., Hariharan, A., Ayanian, N., Sukhatme, G.S.: Cooperative multi-robot control for target tracking with onboard sensing. Int. J. Robot. Res. 34(13), 1660–1677 (2015)

    Article  Google Scholar 

  15. King, J., Pretty, R.K., Gosine, R.G.: Coordinated execution of tasks in a multiagent environment. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 33(5), 615–619 (2003)

    Article  Google Scholar 

  16. Lambiotte, R., Saramäki, J., Blondel, V.D.: Dynamics of latent voters. Phys. Rev. E 79, 046107 (2009)

    Article  MathSciNet  Google Scholar 

  17. Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Auton. Robot. 33(3), 323–336 (2012)

    Article  Google Scholar 

  18. Mathews, N., Christensen, A.L., O’Grady, R., Mondada, F., Dorigo, M.: Mergeable nervous systems for robots. Nat. Commun. 8(1), 439 (2017)

    Article  Google Scholar 

  19. Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo, M.: Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making. Swarm Intell. 5(3–4), 305–327 (2011)

    Article  Google Scholar 

  20. Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from local information on an ad hoc sensor network. In: Zhao, F., Guibas, L. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36978-3_22

    Chapter  MATH  Google Scholar 

  21. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: self-organized strategies to find your way home. Swarm Intell. 2(1), 1–23 (2008)

    Article  Google Scholar 

  22. Nouyan, S., Dorigo, M.: Chain based path formation in swarms of robots. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 120–131. Springer, Heidelberg (2006). https://doi.org/10.1007/11839088_11

    Chapter  Google Scholar 

  23. Nouyan, S., Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009). https://doi.org/10.1109/TEVC.2008.2011746

    Article  Google Scholar 

  24. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)

    Article  Google Scholar 

  25. Parker, C.A.C., Zhang, H.: Cooperative decision-making in decentralized multiple-robot systems: the best-of-N problem. IEEE/ASME Trans. Mechatron. 14(2), 240–251 (2009)

    Article  Google Scholar 

  26. Pinciroli, C., Talamali, M.S., Reina, A., Marshall, J.A.R., Trianni, V.: Simulating Kilobots within ARGoS: models and experimental validation. In: Dorigo, M. (ed.) ANTS 2018. LNCS, vol. 11172, pp. 176–187. Springer, Heidelberg (2018)

    Google Scholar 

  27. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  28. Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: a large nano-quadcopter swarm. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3299–3304. IEEE (2017)

    Google Scholar 

  29. Reina, A., Dorigo, M., Trianni, V.: Towards a cognitive design pattern for collective decision-making. In: Dorigo, M., et al. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 194–205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09952-1_17

    Chapter  Google Scholar 

  30. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pattern for decentralised decision making. PLoS One 10(10), e0140950 (2015)

    Article  Google Scholar 

  31. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)

    Article  Google Scholar 

  32. Şahin, E., et al.: SWARM-BOT: pattern formation in a swarm of self-assembling mobile robots. In: 2002 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 1–6. IEEE Press, Piscataway (2002)

    Google Scholar 

  33. Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno, G., Kumar, V.: Swarm distribution and deployment for cooperative surveillance by micro-aerial vehicles. J. Intell. Robot. Syst. 84(1–4), 469–492 (2016)

    Article  Google Scholar 

  34. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_93

    Chapter  Google Scholar 

  35. Valentini, G.: Achieving Consensus in Robot Swarms: Design and Analysis of Strategies for the Best-of-N Problem. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-53609-5

    Book  MATH  Google Scholar 

  36. Valentini, G., et al.: Kilogrid: a novel experimental environment for the kilobot robot. Swarm Intell. 12(3), 245–266 (2018)

    Article  Google Scholar 

  37. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_6

    Chapter  Google Scholar 

  38. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017)

    Article  Google Scholar 

  39. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 Kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents Multi-Agent Syst. 30(3), 553–580 (2016)

    Article  Google Scholar 

  40. Weigel, T., Gutmann, J.S., Dietl, M., Kleiner, A., Nebel, B.: CS Freiburg: coordinating robots for successful soccer playing. IEEE Trans. Robot. Autom. 18(5), 685–699 (2002)

    Article  Google Scholar 

  41. Winfield, A.F., Holland, O.: The application of wireless local area network technology to the control of mobile robots. Microprocess. Microsyst. 23(10), 597–607 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Gabriele Valentini acknowledges support from the NSF grant No. PHY-1505048. Marco Dorigo acknowledges support from the Belgian F.R.S.-FNRS, of which he is a Research Director. The work presented in this paper was partially supported by the FLAG-ERA project RoboCom++ and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 681872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Trabattoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trabattoni, M., Valentini, G., Dorigo, M. (2018). Hybrid Control of Swarms for Resource Selection. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00533-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00532-0

  • Online ISBN: 978-3-030-00533-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics