Skip to main content

Cytokines in the pathogenesis of human African trypanosomiasis: antagonistic roles of TNF-α and IL-10

  • Chapter
Progress in Human African Trypanosomiasis, Sleeping Sickness

Abstract

At the beginning of the twentieth century, human African trypanosomiasis (HAT) or sleeping sickness surpassed all other public health problems in sub-Saharan Africa. By the late 1950s, the incidence of HAT had been decreased in all endemic countries of West and Central Africa as a result of mass detection and treatment campaigns. Political unrest and civil war have disturbed the normal public health infrastructure, causing a resurgence of this devastating protozoal infection in regions of tropical and subtropical Africa. Recent medical surveys reveal shockingly high prevalence (> 700 cases per 1000) in some endemic areas of equatorial Africa [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ekwanzala M, Pépin J, Khonde N, Molisho S, Bruneel H, DeWals P (1996) In the heart of darkness: sleeping sickness in Zaire. Lancet 348:1427–1430

    PubMed  CAS  Google Scholar 

  2. Gray AR (1967) Some principles of the immunology of trypanosomiasis. Bull WHO 37:177–193

    PubMed  CAS  Google Scholar 

  3. Diggs CL (1982) Immunological research on African trypanosomiasis. Prog Allergy 31:268–300

    PubMed  CAS  Google Scholar 

  4. Mansfield JM (1990) Immunology of African trypanosomiasis. In: Wyler DJ (eds) Modern Parasite Biology. WH Freeman, New York, pp 222–246

    Google Scholar 

  5. Sileghem M, Flynn JN, Darji A, De Baetselier P, Naessens J (1994) African trypanosomiasis. In: Kierszenbaum F (eds) Parasitic Infections and the Immune System. Academic Press, London, pp 1–51

    Google Scholar 

  6. Kotwal GJ (1996) The great escape. Immune evasion by pathogens. The Immunologist 4/5:157–164

    CAS  Google Scholar 

  7. De Baetselier P (1996) Mechanisms underlying trypanosome-induced T-cell immunosuppression. In: Mustafa AS, Al-Attiyah RJ, Nath I, Chugh TD (eds) T-cell subsets and cytokines interplay in infectious diseases. Karger, Basel, pp 124–139

    Google Scholar 

  8. Aggerwal BB, Purish RJ (1995) Human cytokines: their roles in disease and therapy. Blackwell Science, Oxford, UK

    Google Scholar 

  9. Barcinski MA, Costa-Moreira ME (1994) Cellular responses of protozoan parasites to hostderived cytokines. Parasitol Today 10:352

    PubMed  CAS  Google Scholar 

  10. Cox FE, Liew FY (1992) T-cell subsets and cytokines in parasitic infections. Immunol Today 13:445–448

    PubMed  CAS  Google Scholar 

  11. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793

    PubMed  CAS  Google Scholar 

  12. Jankovic D, Sher A (1996) Initiation and regulation of CD4+ T-cell function in host-parasite models. In: Romagnani S (eds) Thl and Th2 cells in health and disease. Karger, Basel, pp 51–65

    Google Scholar 

  13. Kemp M, Theander TG, Kharazmi A (1996) The contrasting roles of CD4+ T cells in intracellular infections in humans: leishmaniasis as an example. Immunol Today 17:13–16

    PubMed  CAS  Google Scholar 

  14. Reiner SL (1994) Parasites and T helper cell development. Parasitol Today 10:485–488

    PubMed  CAS  Google Scholar 

  15. Askonas BA (1985) Macrophages as mediators of immunosuppression in murine African trypanosomiasis. Curr Topics Microbiol Immunol 117:119–127

    CAS  Google Scholar 

  16. Urquhart GM (1980) The pathogenesis and immunology of African trypanosomiasis in domestic animals. Trans R Soc Trop Med Hyg 74:726–729

    PubMed  CAS  Google Scholar 

  17. Lorenz P, Betschart B, Owen JS (1995) Trypanosoma brucei brucei and high-density lipoproteins: old and new thoughts on the identity and mechanism of the tryapanocidal factor in human serum. Parasitol Today 11:348–352

    PubMed  CAS  Google Scholar 

  18. Rifkin MR (1978) Identification of the trypanocidal factor in normal human serum: High-density lipoprotein. Proc Natl Acad Sci USA 75:3540

    Google Scholar 

  19. Smith AB, Esko JD, Hajduk SL (1995) Killing of trypanosomes by the human haptoglobinrelated protein. Science 268:284

    PubMed  CAS  Google Scholar 

  20. Smith AB, Esko JD, Hajduk SL (1995) Killing of trypanosomes by the human haptoglobinrelated protein. Science 268:284

    PubMed  CAS  Google Scholar 

  21. Pentreath VW (1995) Trypanosomiasis and the nervous system: pathology and immunology. Trans R Soc Trop Med Hyg 89:9–15

    PubMed  CAS  Google Scholar 

  22. Buguet A, Bert J, Tapie P, Tabaraud F, Doua F, Lonsdorfer J, Bogui P, Dumas M (1993) Sleep-wake cycle in human African trypanosomiasis. J Clin Neurophysiol 10:190–195

    PubMed  CAS  Google Scholar 

  23. Wakelin D (1996) Parasites and the immune system. Bioscience 47:32–40

    Google Scholar 

  24. Borst P, Rudenko G (1994) Antigenic variation in African trypanosomes. Science 264:1872–1873

    PubMed  CAS  Google Scholar 

  25. Mansfield JM (1994) T-cell responses to the trypanosome variant surface glycoprotein: A new paradigm? Parasitol Today 10:267–270

    PubMed  CAS  Google Scholar 

  26. Jokiranta TS, Jokipii L, Meri S (1995) Complement resistance of parasites. Scand J Immunol 42:9–20

    PubMed  CAS  Google Scholar 

  27. Stevens DR, Moulton JE (1978) Ultrastructural and immunological aspects of the phagocytosis of Trypanosoma brucei by mouse peritoneal macrophages. Infect Immun 19:972–982

    PubMed  CAS  Google Scholar 

  28. Cross AGM (1996) Antigenic variation in trypanosomes: secrets surface slowly. BioAssays 18:283–291

    CAS  Google Scholar 

  29. Seyfang A, Mecke D, Duszenko M (1990) Degradation, recycling and shedding of Trypanosoma brucei variant surface glycoprotein. J Protozool 37:546

    PubMed  CAS  Google Scholar 

  30. Darji A, Sileghem M, Heremans H, Brys L, DeBaetselier P (1993) Inhibition of T-cell responsiveness during experimental infections with Trypanosoma brucei: active involvement of endogenous gamma interferon. Infect Immun 61:3068–3102

    Google Scholar 

  31. Darji A, Beschin A, Sileghem M, Heremans H, Brys L, DeBaetselier P (1996) In vitro simulation of immunosuppression caused by Trypanosoma brucei active involvement of gamma interferon and tumor necrosis factor in the pathway of suppression. Infect Immun 64:1937–1943

    PubMed  CAS  Google Scholar 

  32. Kierszenbaum F, Muthukkumar S, Beltz LA, Sztein MB (1991) Suppression by Trypanosoma brucei rhodesiense of the capacities of human lymphocytes to express interleukin-2 receptors and proliferate after mitogenic stimulation. Infect Immun 59:3518–3522

    PubMed  CAS  Google Scholar 

  33. Mabbott NA, Sutherland IA, Sternberg JM (1995) Suppressor macrophages in Trypanosoma brucei infection: nitric oxide is related to both suppressive activity in vivo. Parasit Immunol 17:143–150

    CAS  Google Scholar 

  34. Sileghem M, Flynn JN (1992) Suppression of interleukin-2 secretion and interleukin-2 receptor expression during tsetse-transmitted trypanosomiasis in cattle. Eur J Immunol 22:767–773

    PubMed  CAS  Google Scholar 

  35. Sternberg JM, McGuigan F (1992) Nitric oxide mediates suppression of T-cell responses in murine Trypanosoma brucei infection. Eur J Immunol 22:2741–2744

    PubMed  CAS  Google Scholar 

  36. Sternberg JM, Mabbott NA (1996) Nitric oxide-mediated suppression of T cell responses during Trypanosoma brucei infection: soluble trypanosome products and interferon-γ are synergistic inducers of nitric oxide synthase. Eur J Immunol 26:539–543

    PubMed  CAS  Google Scholar 

  37. Bakhiet M, Olsson T, Edlund C, Höjeberg B, Holmberg K, Lorentzen J, Kristensson K (1993) Trypanosoma brucei brucei-derived factor that triggers CD8+ lymphocytes to interferon-γ secretion: purification, characterization and protective effects in vivo by treatment with a monoclonal antibody against the factor. Scand J Immunol 37:165

    PubMed  CAS  Google Scholar 

  38. Belley AB, Chandee K (1995) Eicosanoid production by parasites: from pathogenesis to immunomodulation. Parasitol Today 11:327–334

    PubMed  CAS  Google Scholar 

  39. Olsson T, Bakhiet M, Höjeberg B, Ljungdahl Å, Edlund C, Andersson G, Ekre H-P, Fung-Leung W-P, Mak T, Kristensson K (1993) CD8 is critically involved in lymphocyte activation by a T brucei brucei-released molecule. Cell 72:715–727

    PubMed  CAS  Google Scholar 

  40. Titus RG, Sherry B, Cerami A (1991) The involvement of TNF, IL-1 and IL-6 in the immune response to protozoan parasites. Immunoparasitol Today 12/7: A13–A16

    CAS  Google Scholar 

  41. Sweet MJ, Hume DA (1996) Endotoxin signal transduction in macrophages. J Leuk Biol 60:8–26

    CAS  Google Scholar 

  42. Bemelmans MHA, van Tits LJH, Buurman WA (1996) Tumor necrosis factor: production, release and clearance. Crit Rev Immunol 16:1–11

    PubMed  CAS  Google Scholar 

  43. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sei USA 72:3666–3670

    CAS  Google Scholar 

  44. Beutler B, Cerami A (1989) The biology of cachectin/TNF-α primary mediator of the host response. Ann Rev Immunol 7:625–656

    CAS  Google Scholar 

  45. Chao C, Hu S, Petersen PK (1995) Glia, cytokines, and neurotoxicity. Crit Rev Neurobiol 9:189–205

    PubMed  CAS  Google Scholar 

  46. Pober JS, Cotran RS (1990) Cytokines and endothelial cell biology. Physiol Rev 70:427–451

    PubMed  CAS  Google Scholar 

  47. Rink L, Kirchner H (1996) Recent progress in the tumor necrosis factor-α field. Int Arch Allergy Immunol 111: 199–209

    PubMed  CAS  Google Scholar 

  48. Cerami A (1992) Inflammatory cytokines. Clin Immunol Immunopathol 62:S3–S10

    PubMed  CAS  Google Scholar 

  49. van der Poll T, Lowry SF (1995) Tumor necrosis factor in sepsis: mediator of multiple organ failure or essential part of host defence? Shock 3:1–9

    PubMed  Google Scholar 

  50. Clark IA, Rockett KA (1995) TNF, malaria and sepsis. Lancet 345:75–76

    Google Scholar 

  51. Blackwell TS, Christman JW (1996) Sepsis and cytokines: current status. Brit J Anaesth 77:110–117

    PubMed  CAS  Google Scholar 

  52. Barbara JAJ, Ostade XV, Lopez AF (1996) Tumor necrosis factor-alpha (TNF-α): the good, the bad and potentially very effective. Immunol Cell Biol 74:434–443

    PubMed  CAS  Google Scholar 

  53. Lucas R, Magez S, Songa B, Darji A, Hamers R, deBaetselier P (1993) A role for TNF during African trypanosomiasis: involvement in parasite control, immunosuppression and pathology. Res Immunol 144:370

    PubMed  CAS  Google Scholar 

  54. Flynn JN, Sileghem M (1991) The role of the macrophage in induction of immunosuppression in Trypanosoma congolense-infected cattle. Immunol 74:310–316

    CAS  Google Scholar 

  55. Mwangi SM, Odimba F, Logan-Henfrey L (1995) The effect of Trypanosoma brucei brucei infection on rabbit plasma iron and zinc concentrations. Acta Trop 59:283–291

    PubMed  CAS  Google Scholar 

  56. Stadnyk AW, Gauldie J (1991) The acute phase response during parasitic infection. Immunoparasitol 12/7: A7–A12

    CAS  Google Scholar 

  57. Kongshavin PA, Ghadirian E (1988) Enhancing and suppressive effects of tumor necrosis factor/cachectin on growth of Trypanosoma musculi. Parasite Immunol 10:581–588

    Google Scholar 

  58. Magez S, Lucas R, Darji A, Songa B, Hamers R, De Baetselier P (1993) Murine tumor necrosis factor plays a protective role during the phase of the experimental infection with Trypanosoma brucei brucei. Parasit Immunol 15:635–641

    CAS  Google Scholar 

  59. Michie HR, Manogue KR, Spriggs DR, Revhaug A, O’Dwyer S, Dinarello CA, Cerami A, Wolfe SA, Wilmore DW (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481–1485

    PubMed  CAS  Google Scholar 

  60. Radomski MW, Buguet A, Bogui P, Doua F, Lonsdorfer A, Tapie P, Dumas M (1994) Disruptions in the secretion of Cortisol, prolactin, and certain cytokines in human African trypanosomiasis patients. Bull Soc Path Ex 87:376–379

    CAS  Google Scholar 

  61. Reincke M, Heppner C, Petzke F, Allolio B, Arlt W, Mbulamberi D, Siekmann L, Vollmer D, Winkelmann W, Chrousos GP (1994) Impairment of adrenocortical function associated with increased plasma tumor necrosis factor-alpha and interleukin-6 concentrations in African trypanosomiasis. Neuroimmunomodulation 1:14–22

    PubMed  CAS  Google Scholar 

  62. Okomo-Assoumou M, Daulouede S, Lemesre J-L, N’Zila-Mouanda A, Vincendeau P (1995) Correlation of high serum levels of tumor necrosis factor-α with disease severity in human african trypanosomiasis. Am J Trop Med Hyg 53:539–543

    PubMed  CAS  Google Scholar 

  63. Rhind SG, Sabiston BH, Shek PN, Buguet A, Muanga G, Stanghellini A, Dumas M, Radomski MW (1997) Effect of melarsoprol treatment on circulating IL-10 and TNF-α levels in human African trypanosomiasis. Clin Immunol Immunopathol 83:185–189

    PubMed  CAS  Google Scholar 

  64. Green SJ, Nacy CA (1994) L-Arginine-derived nitric oxide is an antimicrobial effector molecule. ASM News 60:83–88

    Google Scholar 

  65. Moncada S, Higgs EA (1995) Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB 9:1319–1330

    CAS  Google Scholar 

  66. Kremsner PG, Winkler S, Brandts C, Wildling E, Jennie L, Graninge W, Prada J, Bienzle U, Juillard P, Grau GE (1995) Prediction of accelerated cure in Plasmodium falciparum malaria by the elevated capacity of tumor necrosis factor production. Am J Trop Med Hyg 53:532–538

    PubMed  CAS  Google Scholar 

  67. Liew FY (1995) Regulation of lymphocyte function by nitric oxide. Curr Opin Immunol 7:396–399

    PubMed  CAS  Google Scholar 

  68. Mendis KN, Carter R (1995) Clinical disease and pathogenesis in malaris. Parasitol Today 11:1–16

    PubMed  Google Scholar 

  69. Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, Arnelle DR, Hollis D, McDonald MI, Granger DL (1996) Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184:557–567

    PubMed  CAS  Google Scholar 

  70. Vincendeau P, Daulouéde S, Veyret B, Dardé ML, Bouteille B, Lemesre JL (1992) Nitric oxide-mediated cytostatic activity on Trypanosoma brucei gambiense and T. brucei brucei. Exp Parasitol 75:353–360

    PubMed  CAS  Google Scholar 

  71. Buguet A, Burlet S, Auzelle F, Montmayeur A, Jouvet M, Cespuglio R (1996) Dual intervention of NO in experimental African trypanosomiasis. CR Acad Sei Paris, Sciences de la vie/Life sciences 319:201–207

    CAS  Google Scholar 

  72. Taylor K, Lutje V, Mertens B (1996) Nitric oxide synthesis is depressed in Bos indicus cattle infected with Trypanosoma congolense and Trypanosoma vivax and does not mediate T-Cell depression. Infect Immun 64:4115–4122

    PubMed  CAS  Google Scholar 

  73. Szczepanik AM, Fishikin RJ, Rush DK, Wilmot CA (1996) Effects of chronic intrahippocampal infusion of lipopolysaccharide in the rat. Neuroscience 70:57–65

    PubMed  CAS  Google Scholar 

  74. Rothwell NJ, Luheshi, G, Toulmond S (1996) Cytokines and their receptors in the central nervous system: physiology, pharmacology, pathology. Pharmacol Ther 69:85–95

    PubMed  CAS  Google Scholar 

  75. Hunter CA, Jennings FW, Kennedy PGE, Murray M (1992) Astrocyte activation correlates with cytokine production in central nervous system pathology in experimental african trypanosomiasis. Lab Invest 67:635–642

    PubMed  CAS  Google Scholar 

  76. Bruce AJ, Boling W, Kindly MS, Peschon J, Kraeme PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nature Med 2:788–795

    PubMed  CAS  Google Scholar 

  77. Alafiatayo RA, Crawley B, Oppenheim BA, Pentreath VW (1993) Endotoxins and the pathogenesis of Trypanosoma brucei brucei infection in mice. Parasitology 107:49–53

    PubMed  CAS  Google Scholar 

  78. Pentreath VW, Alafiatayo RA, Crawley B, Doua F, Oppenheim BA (1996) Endotoxins in the blood and cerebrospinal fluid of patients with African sleeping sickness. Parasitology 112:67–73

    PubMed  Google Scholar 

  79. Krueger JM, Takahashi S, Kapás L, Bredow S, Roky R, Fang J, Floyd R, Renegar KB, Guha-Thakurta N, Novitsky, Obál F (1995) Cytokines in sleep regulation. Adv Neuroimmunol 5:171–188

    PubMed  CAS  Google Scholar 

  80. Takahashi S, Kapás L, Krueger JM (1996) A tumor necrosis factor (TNF) receptor fragment attenuates TNF-α- and muramyl dipeptide-induced sleep and fever in rabbits. J Sleep Res 5:106–114

    PubMed  CAS  Google Scholar 

  81. Kettlehut IC, Fiers W, Goldberg AL (1987) The toxic effects of tumor necrosis factor in vivo and their prevention by cyclooxygenase inhibitors. Proc Natl Acad Sei USA 84:4273–4277

    Google Scholar 

  82. Satomi N, Sakurai A, Haranaka R, Haranaka K (1988) Preventive effects of several chemicals on lethality of recombinant human tumor necrosis factor. J Biol Resp Modif 7:54–64

    CAS  Google Scholar 

  83. Moore KW, O’Garra A, Malefyt RD, Vieira P, Mosmann TR (1993) Interleukin-10. Ann Rev Immunol 11:165–179

    CAS  Google Scholar 

  84. Daftarian PM, Kumar A, Kryworuchko M, Diaz-Mitoma F (1996) IL-10 production is enhanced in human T cells by IL-12 and IL-6 in monocytes by tumor necrosis factor-α. J Immunol 157:12–20

    PubMed  CAS  Google Scholar 

  85. Gazzienelli RT, Oswald IP, James SL, Sher A (1992) IL-10 inhibits parasite killing and nitrogen oxide production by IFN-γ-activated macrophages. J Immunol 148:1792–1796

    Google Scholar 

  86. Peyron F, Burdin N, Ringwald P, Vuillez JP, Rousset F, Banchereau J (1994) High levels of ILIO in human malaria. Clin Exp Immunol 95:300–303

    PubMed  CAS  Google Scholar 

  87. Brown WC, Woods VM, Chitko-McKown CG, Hash SM, Rice-Ficht AC (1994) Interleukin-10 is expressed by bovine type 1 helper, type 2 helper, and unrestricted parasite-specific T-cell clones and inhibits proliferation of all three subsets in an accessory-cell-dependent manner. Infect Immun 62:4697–4708

    PubMed  CAS  Google Scholar 

  88. De Waal Malefyt R, Bennett B, Fidgor C, Vries JED (1991) Interleukin-10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220

    Google Scholar 

  89. Fuchs AC, Granowitz EV, Shapiro L, Vannier E, Dinarello CA (1996) Clinical, hematologic, and immunologic effects of interleukin-10 in humans. J Clin Immunol 16:291–303

    PubMed  CAS  Google Scholar 

  90. Howard M, Muchamuel T, Anrade S, Menon S (1993) Interleukin-10 protects mice from leathal endotoxemia. J Exp Med 177:1205–1208

    PubMed  CAS  Google Scholar 

  91. Kuhn R, Lohler J, Remmick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274

    PubMed  CAS  Google Scholar 

  92. Marchant A, Vincent JL, Goldmam M (1996) Interleukin-10 as a protective cytokine produced during sepsis. In: Morrison DC, Ryan JL (eds) Novel Therapeutic Strategies in the Treatment of Sepsis. Marcel Dekker, New York, pp 301–311

    Google Scholar 

  93. Sporn MB, Roberts AB (1993) Transforming growth factor-β: recent progress, new challenges. J Cell Biol 119:1017–1021

    Google Scholar 

  94. McCartney-Francis NL, Wahl NL (1994) Transforming growth factor β: a matter of life and death. J Leuk Biol 55:401–409

    CAS  Google Scholar 

  95. Bakhiet M, Olsson T, Ljungdahl Å, Höjeberg B, van der Meide P, Kristensson K (1996) Induction of interferon-γ, transforming growth factor-β, and interleukin-4 in mouse strains with different susceptibilities to Trypanosoma brucei brucei. J Interfer Cytok Res 16:427–433

    CAS  Google Scholar 

  96. Lodge PA, Sriram S (1996) Regulation of microglial activation by TGF-beta, IL-10, and CSF-1. J Leuk Biol 60:502–508

    CAS  Google Scholar 

  97. Opp MR, Smith EM, Hughes TK (1995) Interleukin-10 (cytokine synthesis inhibitory factor) acts in the central nervous system of rats to reduce sleep. J Neuroimmunol 60:165–168

    PubMed  CAS  Google Scholar 

  98. Reincke M, Arlt W, Heppner C, Petzke F, Chrousos GP, Allolio B (1998) Neuroendocrine dysfunction in African trypanosomiasis. The role of cytokines. Ann NY Acad Sei 840:809–821

    CAS  Google Scholar 

  99. Sternberg JM (1998) Immunobiology of African trypanosomiasis. Chem Immunol 70:186–190

    PubMed  CAS  Google Scholar 

  100. Beschin A, Brys L, Magez S, Radwanska M, De Baetselier P (1998) Trypanosoma brucei infection elicits nitric oxide-dependent and nitric oxide-independent suppressive mechanisms. J Leukoc Biol 63:429–439

    PubMed  CAS  Google Scholar 

  101. Uzonna JE, Kaushik RS, Gordon JR, Tabel H (1998) Immunoregulation in experimental murine Trypanosoma congolense infection: anti-IL-10 antibodies reverse trypanosome-mediated suppression of lymphocyte proliferation in vitro and moderately prolong the lifespan of genetically susceptible BALB/c mice. Parasite Immunol 20:293–302

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag France

About this chapter

Cite this chapter

Rhind, S.G., Shek, P.N. (1999). Cytokines in the pathogenesis of human African trypanosomiasis: antagonistic roles of TNF-α and IL-10. In: Dumas, M., Bouteille, B., Buguet, A. (eds) Progress in Human African Trypanosomiasis, Sleeping Sickness. Springer, Paris. https://doi.org/10.1007/978-2-8178-0857-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0857-4_7

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-59655-1

  • Online ISBN: 978-2-8178-0857-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics