Skip to main content

Some Views On “Hot Towers” after 50 Years of Tropical Field Programs and Two Years of TRMM Data

  • Chapter
Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM)

Part of the book series: Meteorological Monographs ((METEOR))

Abstract

The “hot tower” hypothesis requires the existence of deep cumulonimbus clouds in the deep Tropics as essential agents, which accomplish the mass and energy transport essential for the maintenance of the general circulation. As the role of the deep convective clouds has been generally accepted, the popularity of referring to these deep “hot” towers as undilute towers also has gained acceptance. This paper examines the consequences of assuming that the deep convective clouds over tropical oceans consist of undilute ascent from the subcloud layer.

Using simple applications of parcel theory, it is concluded that observed properties of typical cumulonimbus updrafts in low- to midtroposphere over tropical oceans are inconsistent with the presence of undilute updrafts. Such undilute updrafts are far more consistent with observations in severe storms of midlatitudes. The observations over tropical oceans can be hypothetically explained by assuming large dilution of updrafts by entrainment below about 500 hPa, followed by freezing of condensate. This freezing and subsequent ascent along an ice adiabat reinvigorates the updrafts and permits them to reach the tropical tropopause with the necessary high values of moist static energy, as the hot tower hypothesis requires. The large difference observed between ocean and land clouds can be explained by assuming slightly smaller entrainment rates for clouds over land. These small entrainment differences have a very large effect on updrafts in the middle and upper troposphere and can presumably account for the large differences in convective vigor, ice scattering, and lightning flash rates that are observed. It follows that convective available potential energy (CAPE) is not a particularly good predictor of the behavior of deep convection.

Using the Tropical Rainfall Measuring Mission (TRMM) to map a proxy for the most intense storms on earth between 36°S and 36°N, they are found mostly outside the deep Tropics, with the notable exception of tropical Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, M. B., H. J. Christian, and J. Latham, 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Meteor. Soc., 121, 1525–1548.

    Article  Google Scholar 

  • Baker, M. B., A. M. Blyth, H. J. Christian, J. Latham, K. L. Miller, and A. M. Gadian, 1999: Relationships between lightning activity and various thundercloud parameters: Satellite and modeling studies. Atmos. Res., 51 (3–4), 221–236.

    Article  Google Scholar 

  • Balsley, B. B., L. W. Ecklund, D. A. Carter, A. C. Riddle, and K. S. Gage, 1988: Average vertical motions in the tropical atmosphere observed by a radar wind profiler on Ponape (7°N latitude, 157°E longitude). J. Atmos. Sci., 45, 396–405.

    Article  Google Scholar 

  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802–822.

    Article  Google Scholar 

  • Blanchard, D. O., 1998: Assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 13, 870877.

    Google Scholar 

  • Bluestein, H. B., E. W. McCaul Jr., G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian TX storm of 7 May 1986. Mon. Wea. Rev., 116, 1790–1804.

    Article  Google Scholar 

  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626–641.

    Article  Google Scholar 

  • Bosart, L. E, and J. W. Nielsen, 1993: Radiosonde penetration of an undilute cumulonimbus anvil. Mon. Wea. Rev., 121, 1688–1702.

    Article  Google Scholar 

  • Braham, R. R., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., 9, 227–242.

    Article  Google Scholar 

  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

    Google Scholar 

  • Davies-Jones, R. P, 1974: Discussion of measurements inside high- speed thunderstorm updrafts. J. Appl. Meteor., 13, 710–717.

    Article  Google Scholar 

  • Ebert, E. E., and G. J. Holland, 1992: Observations of record cold cloud top temperatures in tropical cyclone Hilda (1990). Mon. Wea. Rev., 120, 2240–2251.

    Article  Google Scholar 

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

    Google Scholar 

  • Ferrier, B. S., and R. A. Houze Jr., 1989: One-dimensional time-dependent modeling of GATE cumulonimbus convection. J. Atmos. Sci., 46, 330–352.

    Article  Google Scholar 

  • Goodman, S. J., and H. Christian, 1993: Global observations of lightning. Atlas of Satellite Observations Related to Global Change. R. J. Gurney, J. L. Foster, and C. L. Parkinson, Eds., Cambridge University Press, 191–219.

    Google Scholar 

  • Goodman, S. J., D. E. Buechler, K. Knupp, D. Driscoll, and E. W. McCaul, 2000: The 1997–98 El Nino event and related wintertime lightning variations in the southeastern United States. Geophys. Res. Lett., 27 (4), 541–544.

    Article  Google Scholar 

  • Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13, 795–809.

    Article  Google Scholar 

  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp. Igau, R. C., M. A. LeMone, and D. Wei, 1999: Updraft and downdraft cores in TOGA-COARE: Why so many buoyant downdraft cores? J. Atmos. Sci., 56, 2233–2245.

    Google Scholar 

  • Johnson, R. H., and D. C. Kriete, 1982: Thermodynamic and circulation characteristics of winter monsoon tropical mesoscale convection. Mon. Wea. Rev., 110, 1898–1911.

    Article  Google Scholar 

  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397–2418.

    Article  Google Scholar 

  • Johnson, R. H., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621–640.

    Article  Google Scholar 

  • Johnson, R. H., E. J. Zipser, and M. A. LeMone, 1985: Vertical motion in intense hurricanes. J. Atmos. Sci., 42, 839–856.

    Article  Google Scholar 

  • Keenan, T. D., and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in tropical northern Australia. Quart. J. Roy. Meteor. Soc., 118 (504), 283–326.

    Article  Google Scholar 

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817.

    Article  Google Scholar 

  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389–405.

    Article  Google Scholar 

  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J. Atmos. Sci., 37, 2444–2457.

    Article  Google Scholar 

  • LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and CAPE in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 3493–3518.

    Article  Google Scholar 

  • Lucas, C., M. A. LeMone, and E. J. Zipser, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 (21), 3183–3193.

    Article  Google Scholar 

  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1996: Reply. J. Atmos, Sci., 53, 1212–1216.

    Article  Google Scholar 

  • McCollum, J. R., A. Gruber, and M. B. Ba, 2000: Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. J. Appl. Meteor., 39, 666–679.

    Article  Google Scholar 

  • Miller, L. J., and J. C. Fankhauser, 1983: Radar echo structure, air motion and hail formation in a large stationary multi-cellular thunderstorm. J. Atmos. Sci., 40, 2339–2418.

    Article  Google Scholar 

  • Miller, L. J., J. D. Tuttle, and C. A. Knight, 1988: Airflow and hail growth in a severe northern high plains supercell. J. Atmos. Sci., 45, 736–762.

    Article  Google Scholar 

  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85 GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 2417–2437.

    Article  Google Scholar 

  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the ice scattering signature. J. Appl. Meteor., 38, 596–606.

    Article  Google Scholar 

  • Musil, D. J., A. J. Heymsfield, and P. L. Smith, 1986: Microphysical characteristics of a well-developed weak echo region in a High Plains supercell thunderstorm. J. Climate Appl. Meteor., 25, 1037–1051.

    Article  Google Scholar 

  • Nelson, S. P, 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 1965–1983.

    Article  Google Scholar 

  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 4087–4106.

    Article  Google Scholar 

  • Ooyama, K. V., 1990: A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci., 47, 2580–2593.

    Article  Google Scholar 

  • Orville, R. E., and R. W. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114, 2640–2653.

    Article  Google Scholar 

  • Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103, 14 025–14 040.

    Google Scholar 

  • Riehl, H. 1979: Climate and Weather in the Tropics. Academic Press, 611 pp.

    Google Scholar 

  • Riehl, H. and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503–538.

    Google Scholar 

  • Riehl, H. and J. Simpson, 1979: The heat balance of the equatorial trough zone, revisited. Beitr. Phys. Atmos., 52, 287–305.

    Google Scholar 

  • Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73, 3–16.

    Article  Google Scholar 

  • Sax, R. I., 1969: The importance of natural glaciation on the modification of tropical maritime cumuli by silver iodide seeding. J. Appl. Meteor., 8, 92–104.

    Article  Google Scholar 

  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471–489.

    Article  Google Scholar 

  • Simpson, J., R. E Adler, and G. R. North, 1988: Proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295.

    Article  Google Scholar 

  • Simpson, J., T. D. Keenan, B. Ferrier, R. H. Simpson, and G. J. Holland, 1993: Cumulus mergers in the Maritime Continent region. Meteor. Atmos. Phys., 51, 73–99.

    Article  Google Scholar 

  • Simpson, J., C. Kummerow, W.-K. Tao, and R. E Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60, 19–36.

    Article  Google Scholar 

  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 2643–2661.

    Article  Google Scholar 

  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal.. 1. Atmos. Oceanic Technol., 6, 254–273.

    Article  Google Scholar 

  • Vivekanandan, T., J. Turk, and V. N. Bringi, 1991: Ice water path estimation and characterization using passive microwave radiometry. J. Appl. Meteor., 30, 1407–1421.

    Article  Google Scholar 

  • Wei, D., A. M. Blyth, and D. J. Raymond, 1998: Buoyancy of convective clouds in TOGA COARE. J. Atmos. Sci., 55, 3381–3391.

    Article  Google Scholar 

  • Williams, E. R., S. A. Rutledge, S. G. Geotis, N. Renno, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 1386–1395.

    Article  Google Scholar 

  • Willis, P. T., and J. Hallett, 1991: Microphysical measurements from an aircraft ascending with a growing isolated maritime cumulus tower. J. Atmos. Sci., 48, 283–300.

    Article  Google Scholar 

  • Xu, K.-M., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 1471–1479.

    Article  Google Scholar 

  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the Tropics with and without lightning. Mon. Wea. Rev., 122, 1837–1851.

    Article  Google Scholar 

  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 2458–2469.

    Article  Google Scholar 

  • Zipser, E. J., and K. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 1751–1759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 American Meteorological Society

About this chapter

Cite this chapter

Zipser, E.J. (2003). Some Views On “Hot Towers” after 50 Years of Tropical Field Programs and Two Years of TRMM Data. In: Tao, WK., Adler, R. (eds) Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM). Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-878220-63-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-878220-63-9_5

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-878220-63-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics