Skip to main content

Part of the book series: Meteorological Monographs ((METEOR))

  • 286 Accesses

Abstract

Joanne Simpson began contributing to advances in tropical convection about half a century ago. The hot tower hypothesis jointly put forth by Joanne Simpson and Herbert Riehl postulated that deep convective clouds populating the “equatorial trough zone” were responsible for transporting heat from the boundary layer to the upper troposphere. This hypothesis was the beginning of a 50-year quest to describe and understand near-equatorial deep convection. Tropical field experiments in the 1970s [Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) and the Monsoon Experiment (MONEX)] in which Joanne participated documented the mesoscale structure of the convective systems, in particular the deep, stratiform, dynamically active mesoscale clouds that are connected with the hot towers. In the 1980s these new data led to better understanding of how tropical mesoscale convective systems vertically transport heat and momentum. The role of the mesoscale stratiform circulation in this transport was quantified. Tropical field work in the 1990s [especially the Coupled Ocean-Atmosphere Response Experiment (COARE), in which Joanne again participated] showed the importance of a still larger scale of convective organization, the “supercluster.” This larger scale of organization has a middle-level inflow circulation that appears to be an important transporter of momentum. The mesoscale and supercluster scale of organization in tropical convective systems are associated with the stratiform components of the cloud systems. Joint analysis of satellite and radar data from COARE show a complex, possibly chaotic relationship between cloud-top temperature and the size of a stratiform precipitation area. The Tropical Rainfall Measuring Mission (TRMM) satellite, for which Joanne served as project scientist for nearly a decade, is now providing a global census of mesoscale and supercluster-scale organization of tropical convection. The TRMM dataset should therefore provide some closure to the question of the nature of deep convection in the equatorial trough zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. K., E. W. Ferguson, and V. J. Oliver, 1966: The use of satellite pictures in weather analysis and forecasting. WMO Tech. Note 75, 184 pp.

    Google Scholar 

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus ensemble with the large-scale environment: part I. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997: Rain type classification algorithm for TRMM Precipitation Radar. Proc. Int. Geoscience and Remote Sensing Symp., Singapore, IEEE, 1633–1635.

    Google Scholar 

  • Chalon, J.-P, G. Jaubert, E Roux, and J.-P. Lafore, 1988: The west African squall line observed on 23 June 1981: Mesoscale structure and transports. J. Atmos. Sci., 45, 2744–2763.

    Article  Google Scholar 

  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and lifecycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357–388.

    Article  Google Scholar 

  • Chen, S. S., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 1380–1409.

    Article  Google Scholar 

  • Cheng, C.-P, and R. A. flouze Jr., 1979: The distribution of convective and mesoscale precipitation in GATE radar echo patterns. Mon. Wea. Rev., 107, 1370–1381.

    Article  Google Scholar 

  • Chong, M., and D. Hauser, 1989: A tropical squall line observed during the COPT 81 experiment in West Africa. Part II: Water budget. Mon. Wea. Rev., 117, 728–744.

    Article  Google Scholar 

  • Chong, M., P. Amayenc, G. Scialom, and J. Testud, 1987: A tropical squall line observed during the COPT 81 experiment in West Africa. Part I: Kinematic structure inferred from dual-Doppler radar data. Mon. Wea. Rev., 115, 670–694.

    Article  Google Scholar 

  • Churchill, D. D., and R. A. Houze Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41, 933–960.

    Article  Google Scholar 

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111–1143.

    Article  Google Scholar 

  • Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118–135.

    Article  Google Scholar 

  • Gamache, J. F., and R. A. Houze Jr., 1983: Water budget of a mesoscale convective system in the tropics. J. Atmos. Sei., 40, 1835–1850.

    Article  Google Scholar 

  • Gamache, J. F., and R. A. Houze Jr., 1985: Further analysis of the composite wind and thermodynamic structure of the 12 September GATE squall line. Mon. Wea. Rev., 113, 1241–1259.

    Article  Google Scholar 

  • Godfrey, J. S., R. A. Houze Jr., R. H. Johnson, R. Lukas, J.-L. Redelsperger, A. Sunni, and R. Weller, 1998: COARE: An interim report. J. Geophys. Res., 103, 14395–14450.

    Article  Google Scholar 

  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113–121.

    Article  Google Scholar 

  • Haynes, P. H., and M. E. Maclntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–841.

    Article  Google Scholar 

  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540–1567.

    Article  Google Scholar 

  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396–410.

    Google Scholar 

  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425–461.

    Article  Google Scholar 

  • Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19, 541–576.

    Article  Google Scholar 

  • Houze, R. A., Jr., and E. N. Rappaport, 1984: Air motions and precipitation structure of an early summer squall line over the eastern tropical Atlantic. J. Atmos. Sci., 41, 553–574.

    Article  Google Scholar 

  • Houze, R. A., Jr., and T. Wei, 1987: The GATE squall line of 9–10 August 1974. Adv. Atmos. Sci., 4, 85–92.

    Article  Google Scholar 

  • Houze, R. A., Jr., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin-Rossby wave. J. Atmos. Sci., 57, 3058–3089.

    Article  Google Scholar 

  • Johnson, R. H., and R. A. Houze Jr., 1987: Precipitating cloud systems of the Asian monsoon. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Clarendon Press, 298–353.

    Google Scholar 

  • Kingsmill, D. E., and R. A. Houze Jr., 1999a: Kinematic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool: An airborne Doppler radar survey. Quart. J. Roy. Meteor. Soc., 125, 1165–1207.

    Article  Google Scholar 

  • Kingsmill, D. E., and R. A. Houze Jr., 1999b: Thermodynamic characteristics of precipitating convection over the west Pacific warm pool. Quart. J. Roy. Meteor. Soc., 125, 1209–1229.

    Article  Google Scholar 

  • Kuettner, J. E, and D. E. Parker, 1976: GATE: Report on the field phase. Bull. Amer. Meteor. Soc., 57, 11–27.

    Google Scholar 

  • Lafore, J. P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 52 1544.

    Google Scholar 

  • Leary, C. A., 1984: Precipitation structure of the cloud clusters in a tropical easterly wave. Mon. Wea. Rev., 112, 313–325.

    Article  Google Scholar 

  • Leary, C. A., and R. A. Houze Jr., 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457.

    Google Scholar 

  • LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 1815–1834.

    Article  Google Scholar 

  • Lorenz, E. N., 1993: The Essence of Chaos. University of Washington Press, 227 pp.

    Google Scholar 

  • Malkus, J. S., 1952: The slopes of cumulus clouds in relation to external wind shear. Quart. J. Roy. Meteor. Soc., 78, 530–542.

    Article  Google Scholar 

  • Malkus, J. S., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11, 222–237.

    Google Scholar 

  • Malkus, J. S., and H. Riehl, 1964: Cloud Structure and Distributions over the Tropical Pacific Ocean. University of California Press, Berkeley, 229 pp.

    Google Scholar 

  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 2026–2037.

    Article  Google Scholar 

  • Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 1807–1828.

    Article  Google Scholar 

  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Met. Soc., 102, 373–394.

    Article  Google Scholar 

  • Moncrieff, M. W., and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case study. Quart. J. Roy. Met. Soc., 123, 805–827.

    Article  Google Scholar 

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823–839.

    Google Scholar 

  • Ooyama, K. 1971: A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan, 49, 744–756.

    Google Scholar 

  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 2708–2718.

    Article  Google Scholar 

  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503–538.

    Google Scholar 

  • Roux, E, 1988: The west African squall line, observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406–426.

    Article  Google Scholar 

  • Roux, E, J. Testud, M. Payen, and B. Pinty, 1984: West African squall-line thermodynamic structure retrieved from dual-Doppler radar observations. J. Atmos. Sci., 41, 3104–3121.

    Article  Google Scholar 

  • Schumacher, C., and R. A. Houze Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39, 2151–2164.

    Article  Google Scholar 

  • Shupiatsky, A. B., A. I. Korotov, V. D. Menshenin, R. S. Pastushkov, and M. Jovasevic, 1975: Radar investigations of evolution of clouds in the eastern Atlantic. GATE Rep. 14, vol. 2, International Council of Scientific Unions/World Meteorological Organization.

    Google Scholar 

  • Shupiatsky, A. B., A. I. Korotov, and R. S. Pastushkov, 1976: Radar investigations of the evolution of clouds in the East Atlantic. TROPEX-74, XXX, Ed., Vol. 1, Atmosphere (in Russian), Gidrometeoizdat, Leningrad, USSR, 508–514.

    Google Scholar 

  • Sommeria, G., and J. Testud, 1984: COPT81: A field experiment designed for the study of dynamics and electrical activity of deep convection in continental tropical regions. Bull. Amer. Meteor. Soc., 65, 4–10.

    Article  Google Scholar 

  • Sun, J., and F Roux, 1988: Thermodynamic structure of the trailing-stratiform regions of two west African squall lines. Ann. Geophys., 6, 659–670.

    Google Scholar 

  • Warner, C., J. Simpson, G. van Helvoirt, D. W. Martin, D. Suchman, and G. L. Austin, 1980: Deep convection on day 261 of GATE. Mon. Wea. Rev., 108, 169–194.

    Article  Google Scholar 

  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The coupled ocean–atmosphere response experiment. Bull. Amer. Meteor. Soc., 73, 1377–1416.

    Article  Google Scholar 

  • Williams, M., and R. A. Houze Jr., 1987: Satellite–observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505–519.

    Article  Google Scholar 

  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sei., 30, 611–627.

    Article  Google Scholar 

  • Yuter, S. E., and R. A. Houze Jr., 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Met. Soc., 124, 53–99.

    Article  Google Scholar 

  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799–814.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 American Meteorological Society

About this chapter

Cite this chapter

Houze, R.A. (2003). From Hot Towers to TRMM: Joanne Simpson and Advances in Tropical Convection Research. In: Tao, WK., Adler, R. (eds) Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM). Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-878220-63-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-878220-63-9_4

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-878220-63-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics