Skip to main content

Laser Automation and In-process Sensing

  • Chapter
Laser Material Processing

Abstract

The recent developments in industry, particularly through the activities of Ford Motor Company, where the word “automation” was first used in the 1940s, have sketched a progression through “mechanisation” – the use of machines which enhanced speed, force or reach, but where the control was human, to “automatic” machinery – in which the machine will go through its programmed movements without human intervention and the machine is self-regulating, until today when we have “automation” – in which there is usually a sequence of machines all controlling themselves under some overall control. In the future there is the prospect of “adaptive control” or “intelligent” machines – in which the machine can be set a task and it teaches itself to do the task better and better according to some preset criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kapton® is a registered trademark of E.I. du Pont de Nemours and Company. http://www.dupont.com

  2. 2.

    Pyrocam® is a registered trademark of Ophir-Spiricon Inc. http://www.ophiropt.com

References

  1. Craig JJ (1988) Adaptive control of mechanical manipulators. Addison-Wesley, Reading

    Google Scholar 

  2. Lim GC, Steen WM (1982) The measurement of the temporal and spatial power distribution of a high powered CO2 laser beam. Opt Laser Technol Jun 149–153

    Google Scholar 

  3. Lim GC, Steen WM (1984) Instrument for the instantaneous in-situ analysis of the mode structure of a high power laser beam. J Phys E Sci Instrum 17:999–1007

    Article  Google Scholar 

  4. Sparkes M, O’Neill W, Gabzdyl J (2002) In process laser beam diagnostics. In: ICALEO’02 proceedings, Phoenix, October 2002. LIA, Orlando, paper 403

    Google Scholar 

  5. Sparkes MR (1996) Automatic CO2 laser beam alignment systems. PhD thesis, Liverpool University

    Google Scholar 

  6. Feurschbach PW, Norris JT (2002) Beam characterisation for Nd:YAG spot welding lasers. In: ICALEO’02 proceedings, Phoenix, October 2002. LIA, Orlando, paper 407

    Google Scholar 

  7. Green LI (2002) New methods for beam profiling high power CO2 lasers with an IR camera-based system. In: ICALEO’02 proceedings, Phoenix, October 2002. LIA, Orlando, paper 401

    Google Scholar 

  8. Dearden G, Sharp M, French PW, Watkins KG, Green LI (2001) Initial studies of laser beam performance monitoring using a novel camera-based in-line beam monitoring system. In: ICALEO’01 proceedings, Jacksonville, October 2001. LIA, Orlando, paper 543

    Google Scholar 

  9. Kramer R, Hansel K, Schwede H, Brandl V, Klos M (2002) Logarithmic CMOS camera microscope for beam diagnostics – profiling of high power Q-switch lasers. In: ICALEO’02 proceedings, Phoenix, October 2002. LIA, Orlando, paper 404

    Google Scholar 

  10. Johnstone I (2000) Beam sampling and process monitoring in laser material applications. Ind Laser User 20:34–35

    Google Scholar 

  11. International Organization for Standardization (1993) Test methods for laser beam parameters: beam widths, divergence angle and beam propagation factor. Document ISO11146. International Organization for Standardization, Geneva

    Google Scholar 

  12. Goldberg F (1985) Inductance seam tracking improves mechanisation and robotic welding. In: Proceedings of automation and robotisation of welding, Strasbourg, France

    Google Scholar 

  13. Hanicke L (1987) Laser technology within the Volvo Car Corp. In: Proceedings of the 4th international conference laser in manufacturing (LIM4), Birmingham, UK, May 1987. IFS, Kempston/Springer, Berlin, pp 49–58

    Google Scholar 

  14. Li L (1989) Intelligent laser cladding control system design and construction. PhD thesis, University of London

    Google Scholar 

  15. Morgan SA, Fox MDT, McLean MA, Hand DP, Haran FM, Su D, Steen WM, Jones JDC (1997) Real time process control in CO2 laser welding and direct casting focus and temperature. In: ICALEO’97 proceedings, San Diego, October 1997. LIA, Orlando, pp 290–299

    Google Scholar 

  16. Hand DP, Fox MDT, Haran FM, Peters C, Morgan SA, McLean MA, Steen WM, Jones JDC (2000) Optical focus control system for laser welding and direct casting. J Opt Lasers Eng 34:415–427

    Article  Google Scholar 

  17. Lucas J, Smith JS (1988) Seam following for automatic welding. Proc SPIE 952:559–564

    Google Scholar 

  18. Sloan K, Lucas J (1982) Microprocessor control of TIG welding systems. IEE Proc Part D.1 1–8

    Google Scholar 

  19. Oomen G, Verbeek W (1984) Real time optical profile sensor for robot arc welding. In: Proceedings of intelligent robots ROVISEC 3, Cambridge, MA

    Google Scholar 

  20. Boas G (2001) Welding system monitors gas shield. Appl Opt 20:6606–6610

    Google Scholar 

  21. Sun A, Kannatey-Asibu E (1999) Sensor systems for real time monitoring of laser weld quality. J Laser Appl 11(4):153–168

    Article  Google Scholar 

  22. Steen WM, Weerasinghe VM (1986) Monitoring of laser material processing. Proc SPIE 650:16–166

    Google Scholar 

  23. Tashiro H, Suetsugu Y (1991) Localisation of incident laser beam in the optical element by on-site photo-acoustic detection. J Appl Phys 69(9):6741–6743

    Article  Google Scholar 

  24. Postacioglu N, Kapadia P, Dowden J (1988) Capillary waves on the weld pool in production welding with a laser. J Phys D Appl Phys 22:1050–1061

    Article  Google Scholar 

  25. Li L, Steen WM (1992) Non contact acoustic emission monitoring during laser welding. In: Farson D, Steen WM, Miyamoto I (eds) ICALEO’92 proceedings, Orlando, October 1992. LIA, Orlando, pp 719–728

    Google Scholar 

  26. Li L, Brookfield DJ, Steen WM (1996) In-process laser weld monitoring. In: Proceedings of IIW Asian Pacific welding congress, February 1996, pp 119–136

    Google Scholar 

  27. Li L, Qi N, Brookfield DJ, Steen WM (1990) Laser weld quality monitoring and fault diagnosis. In: Proceedings of the conference laser system and applications in industry, Turin, Italy, November 1990, pp 165–178

    Google Scholar 

  28. Chen HB, Li L, Steen WM, Brookfield DJ (1993) Multi-frequency fibre optic sensors for in-process laser welding quality monitoring. J Non Destruct Test Eval 26(2):67–73

    Google Scholar 

  29. Anglos D, Couris S, Mavromanolakis A et al (1995) Artwork diagnostics: laser induced breakdown spectroscopy (LIBS) and laser induced fluorescence (LIF) spectroscopy. In: Proceedings of LACONA I (1st international conference on lasers in conservation of artworks), Greece, 1995, pp 113–118

    Google Scholar 

  30. Kaierle S, Abels P, Kapper G, Kratzsch C, Michel J, Schulz W, Poprawe R (2001) State of the art and new advances in process control for laser materials processing. In: ICALEO’01 proceedings, Jacksonville, October 2001. LIA, Orlando, paper 805

    Google Scholar 

  31. Rubruck V, Geisler E, Bergmann HW (1990) Case depth control for laser treated materials. In: Proceedings of the 3rd European conference on laser treatment of materials, ECLAT’90, Erlangen, Germany, September 1990. Sprechsaal, Coburg, pp 207–216

    Google Scholar 

  32. Juvin D, de Prunelle D, Lerat B. SAO par Imagerie. In: Proceedings of aut des procedes de soudage, 1986, Grenoble, France

    Google Scholar 

  33. Zheng HY, Brookfield DJ, Steen WM (1989) The use of fibre optics for in-process monitoring of laser cutting. In: ICALEO’89 proceedings, Orlando, 12–22 October 1989. LIA, Orlando, pp 140–154

    Google Scholar 

  34. Olsen F (1988) Investigations in methods for adaptive control of laser processing. Opto Electron Mag 4(2):168

    Google Scholar 

  35. Miyamoto I, Ohie T, Maruo H (1988) Fundamental study of in-process monitoring in laser cutting. In: Proceedings of CISFFEL 4, Cannes, France, pp 683–692

    Google Scholar 

  36. Mazumder J, Dutta D, Kikuchi N, Ghosh A (2000) Closed loop direct metal deposition: art to part. J Opt Lasers Eng 34:397–414

    Article  Google Scholar 

  37. Beyer E (1988) Plasma fluctuation in laser welding with CW CO2 laser. In: ICALEO’87 proceedings, San Diego, CA, May 1987. IFS, Kempston, and Springer, Berlin, in association with LIA, Toledo, pp 17–23

    Google Scholar 

  38. Li L, Steen WM, Hibberd R, Brookfield DJ (1990) In-process monitoring of clad quality using optical method. Proc SPIE 1279:89–100

    Article  Google Scholar 

  39. Burg B (1986) Smart laser cutter. Proc SPIE 650:27–278

    Google Scholar 

  40. Li L, Hibberd R, Steen WM (1987) In-process laser power monitoring and feedback control. In: Steen WM (ed) Proceedings of the 4th international conference on lasers in manufacturing (LIM4), Birmingham, UK, May 1987. IFS, Kempston, pp 165–175

    Google Scholar 

  41. Scruby CB, Drain LE (1990) Laser ultrasonics, techniques and applications. Hilger, Bristol

    Google Scholar 

  42. Baker G (2003) Laser inspection of materials online. Materials World Jan 22–23

    Google Scholar 

  43. Klein MB, Pouet B, Kercel S, Kisner R (2001) In-process detection of weld defects using laser ultrasonics. In: ICALEO’01 proceedings, Jacksonville, October 2001. LIA, Orlando, paper P534

    Google Scholar 

  44. Rawlings RD, Steen WM (1981) Acoustic emission monitoring of surface hardening by laser. Opt Lasers Eng Nov 173–187

    Google Scholar 

  45. Powell J, Steen WM (1981) Vibro laser cladding. In: Mukherjee K, Mazumder J (eds) Proceedings of the symposium lasers in metallurgy. Metallurgical Society of AIME, Warrendale, pp 93–104

    Google Scholar 

  46. Lee JM, Watkins KG (2000) In-process monitoring techniques for laser cleaning. J Opt Lasers Eng 34:329–442

    Google Scholar 

  47. Drenker A, Beyer E, Boggering L, Kramer R, Wissenbach K (1990) Adaptive temperature control in laser transformation hardening. In: Proceedings of the 3rd European conference on laser treatment of materials ECLAT’90, Erlangen, Germany, September 1990. Sprechsaal, Coburg, pp 283–290

    Google Scholar 

  48. Li L, Steen WM, Hibberd RD, Weerasinghe VM (1988) Real time expert system for supervisory control of laser cladding. In: ICALEO’87 proceedings, San Diego, May 1987. IFS, Kempston, and Springer, Berlin, in association with LIA, Toledo, pp 9–16

    Google Scholar 

  49. Willmott NFF, Hibberd R, Steen WM (2008) Keyhole/plasma sensing system for laser welding control system. In: ICALEO’88 proceedings, Santa Clara, October–November 1988. LIA, Orlando, pp 109–118

    Google Scholar 

  50. Spalding IJ (1986) High power laser beam diagnostics, part I. In: Proceedings of the 6th international gas flow and chemical laser conference (GLC6), Jerusalem, Israel, September 1986. Springer, Berlin, pp 314–322

    Google Scholar 

  51. Sepold G, Juptner G, Rothe R (1980) Remarks on deep penetration cutting with a CO2 laser. In: Proceedings of the international conference on welding research, Osaka, Japan, 1980. JWRI, paper A-29

    Google Scholar 

  52. Oakley PJ (1983) Measurement of laser beam parameters. IIW DOC IV-350-83. International Institute of Welding, Roissy Charles de Gaulle Airport

    Google Scholar 

  53. Rasmussen AL (1973) Double plate calorimeter for measuring the reflectivity of the plates and energy in beam of radiation. US Patent 3,622,245, December 1971

    Google Scholar 

  54. Mansell DN (1973) Laser beam scanning device. US Patent 3,738,168, 12 June 1973

    Google Scholar 

  55. Davis JM, Peter PH (1971) Calorimeter with a high reflective surface for measuring intense thermal radiation. Appl Opt 10(8):1959–1960

    Article  Google Scholar 

  56. Shrakura T et al (1984) Methods and apparatus for measuring laser beam. US Patent 4,474,468, 2 October 1984

    Google Scholar 

  57. Gibson AF, Kimitt MF, Walker AC (1970) Photon drag radiation monitors for use with pulsed CO2 lasers. Appl Phys Lett 17:75–77

    Article  Google Scholar 

  58. Satheesshkumar MK, Vallabhan CPG (1985) Use of a photo-acoustic cell as a scientific laser power meter. J Phys E Sci Instrum 18:435–436

    Article  Google Scholar 

  59. Ulrich PB (1983) Power meter for high energy lasers. US Patent 4,481,148, 26 April 1983

    Google Scholar 

  60. Miller TG (1982) Power measuring device for pulsed lasers. US Patent 4,325,252, 20 April 1982

    Google Scholar 

  61. Shifrin GA (1970) Absorption radiometer. US Patent 3,487,685, 6 January 1970

    Google Scholar 

  62. Crow TG (1980) Laser energy monitor. US Patent 4,424,581, 30 December 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Steen, W., Mazumder, J. (2010). Laser Automation and In-process Sensing. In: Laser Material Processing. Springer, London. https://doi.org/10.1007/978-1-84996-062-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-062-5_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-061-8

  • Online ISBN: 978-1-84996-062-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics