Skip to main content

In Ovo Electroporation of miRNA-Based-Plasmids to Investigate Gene Function in the Developing Neural Tube

  • Protocol
  • First Online:
Gene Function Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1101))

Abstract

When studying gene function in vivo during development, gene expression has to be controlled in a precise temporal and spatial manner. Technologies based on RNA interference (RNAi) are well suited for such studies, as they allow for the efficient silencing of a gene of interest. In contrast to challenging and laborious approaches in mammalian systems, the use of RNAi in combination with oviparous animal models allows temporal control of gene silencing in a fast and precise manner. We have developed approaches using RNAi in the chicken embryo to analyze gene function during neural tube development. Here we describe the construction of plasmids that direct the expression of one or two artificial microRNAs (miRNAs) to knock down expression of endogenous protein/s of interest upon electroporation into the spinal cord. The miRNA cassette is directly linked to a fluorescent protein reporter, for the direct visualization of transfected cells. The transcripts are under the control of different promoters/enhancers which drive expression in genetically defined cell subpopulations in the neural tube. Mixing multiple RNAi vectors allows combinatorial knockdowns of two or more genes in different cell types of the spinal cord, thus permitting the analysis of complex cellular and molecular interactions in a fast and precise manner. The technique that we describe can easily be applied to other cell types in the neural tube, or even adapted to other organisms in developmental studies.

Irwin Andermatt and Nicole Wilson have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pekarik V, Bourikas D, Miglino N, Joset P, Preiswerk S, Stoeckli ET (2003) Screening for gene function in chicken embryo using RNAi and electroporation. Nat Biotechnol 21:93–96

    Article  PubMed  CAS  Google Scholar 

  2. Bourikas D, Pekarik V, Baeriswyl T, Grunditz A, Sadhu R, Nardó M, Stoeckli ET (2005) Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat Neurosci 8:297–304

    Article  PubMed  CAS  Google Scholar 

  3. Niederkofler V, Baeriswyl T, Ott R, Stoeckli ET (2010) Nectin-like molecules/SynCAMs are required for post-crossing commissural axon guidance. Development 137:427–435

    Article  PubMed  CAS  Google Scholar 

  4. Das RM, van Hateren NJ, Howell GR, Farrell ER, Bangs FK, Porteous VC, Manning EM, McGrew MJ, Ohyama K, Sacco MA et al (2006) A robust system for RNA interference in the chicken using a modified microRNA operon. Dev Biol 294:554–563

    Article  PubMed  CAS  Google Scholar 

  5. Wilson NH, Stoeckli ET (2011) Cell type specific, traceable gene silencing for functional gene analysis during vertebrate neural development. Nucleic Acids Res 39:e133

    Article  PubMed  CAS  Google Scholar 

  6. Helms AW, Abney AL, Ben-Arie N, Zoghbi HY, Johnson JE (2000) Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development 127:1185–1196

    PubMed  CAS  Google Scholar 

  7. Stoeckli ET (2006) Longitudinal axon guidance. Curr Opin Neurobiol 16:35–39

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Lufkin T (2000) Cre recombinase expression in the floorplate, notochord and gut epithelium in transgenic embryos driven by the Hoxa-1 enhancer III. Genesis 26:121–122

    Article  PubMed  CAS  Google Scholar 

  9. Ai H-W, Shaner NC, Cheng Z, Tsien RY, Campbell RE (2007) Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46:5904–5910

    Article  PubMed  CAS  Google Scholar 

  10. Kieleczawa J (2006) Fundamentals of sequencing of difficult templates—an overview. J Biomol Tech 17:207–217

    PubMed  Google Scholar 

  11. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148

    Article  PubMed  CAS  Google Scholar 

  12. Zheng L, Baumann U, Reymond J-L (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115

    Article  PubMed  Google Scholar 

  13. Barik S (2002) Megaprimer PCR. Methods Mol Biol 192:189–196

    PubMed  CAS  Google Scholar 

  14. Wilson NH, Stoeckli ET (2012) In ovo electroporation of miRNA-based plasmids in the developing neural tube and assessment of phenotypes by DiI injection in open-book preparations. J Vis Exp 68:e4384. doi:10.3791/4384

    Google Scholar 

  15. Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272

    Article  PubMed  CAS  Google Scholar 

  16. Baeriswyl T, Mauti O, Stoeckli ET (2008) Temporal control of gene silencing by in ovo electroporation. Methods Mol Biol 442:231–244

    Article  PubMed  CAS  Google Scholar 

  17. Rao M, Baraban JH, Rajaii F, Sockanathan S (2004) In vivo comparative study of RNAi methodologies by in ovo electroporation in the chick embryo. Dev Dyn 231:592–600

    Article  PubMed  CAS  Google Scholar 

  18. Stepanek L, Stoker AW, Stoeckli E, Bixby JL (2005) Receptor tyrosine phosphatases guide vertebrate motor axons during development. J Neurosci 25:3813–3823

    Article  PubMed  CAS  Google Scholar 

  19. Sato F, Nakagawa T, Ito M, Kitagawa Y, Hattori M-A (2004) Application of RNA interference to chicken embryos using small interfering RNA. J Exp Zool Comp Exp Biol 301:820–827

    Article  Google Scholar 

  20. Krull CE (2004) A primer on using in ovo electroporation to analyze gene function. Dev Dyn 229:433–439

    Article  PubMed  CAS  Google Scholar 

  21. Mauti O, Baeriswyl T, Stoeckli ET (2008) Gene silencing by injection and electroporation of dsRNA in avian embryos. CSH Protoc doi:10.1101/pdb.prot5094

  22. Chesnutt C, Niswander L (2004) Plasmid-based short-hairpin RNA interference in the chicken embryo. Genesis 39:73–78

    Article  PubMed  CAS  Google Scholar 

  23. Perrin FE, Stoeckli ET (2000) Use of lipophilic dyes in studies of axonal pathfinding in vivo. Microsc Res Tech 48:25–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of E.S. is supported by a grant from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Andermatt, I., Wilson, N., Stoeckli, E.T. (2014). In Ovo Electroporation of miRNA-Based-Plasmids to Investigate Gene Function in the Developing Neural Tube. In: Ochs, M. (eds) Gene Function Analysis. Methods in Molecular Biology, vol 1101. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-721-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-721-1_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-720-4

  • Online ISBN: 978-1-62703-721-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics