Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1097))

Abstract

Many RNA families, i.e., groups of homologous RNA genes, belong to RNA classes, such as tRNAs, snoRNAs, or microRNAs, that are characterized by common sequence motifs and/or common secondary structure features. The detection of new members of RNA classes, as well as the comprehensive annotation of genomes with members of RNA classes is a challenging task that goes beyond simple homology search. Computational methods addressing this problem typically use a three-tiered approach: In the first step an efficient and sensitive filter is employed. In the second step the candidate set is narrowed down using computationally expensive methods geared towards specificity. In the final step the hits are annotated with class-specific features and scored. Here we review the tools that are currently available for a diverse set of RNA classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7 Suppl 1:S10.1–12

    Article  Google Scholar 

  2. Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29(22):4724–4735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Eddy S (2005) rnabob. ftp://selab.janelia.org/pub/software/rnabob/. Accessed 9 Nov 2013

  4. Gautheret D, Lambert A (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 313: 1003–1011

    Article  CAS  PubMed  Google Scholar 

  5. Gräf S, Strothmann D, Kurtz S, Steger G (2001) HyPaLib: a database of RNAs and RNA structural elements defined by hybrid patterns. Nucleic Acids Res 29:196–198

    Article  PubMed Central  PubMed  Google Scholar 

  6. Meyer F, Kurtz S, Backofen R, Will S, Beckstette M (2011) Structator: fast index-based search for RNA sequence-structure patterns. BMC Bioinformatics 12:214

    Google Scholar 

  7. Tsui V, Macke T, Case DA (2003) A novel method for finding tRNA genes. RNA 9:507–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Collins LJ, Macke TJ, Penny D (2004) Searching for ncRNAs in eukaryotic genomes: maximizing biological input with RNAmotif. J Integr Bioinform 1:6

    Google Scholar 

  9. Eigen M, Lindemann BF, Tietze M, Winkler-Oswatitsch R, Dress AWM, von Haeseler A (1989) How old is the genetic code? Statistical geometry of tRNA provides an answer. Science 244:673–679

    Article  CAS  PubMed  Google Scholar 

  10. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl. Acids Res. 25:955–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fichant GA, Burks C (1991) Identifying potential tRNA genes in genomic DNA sequences. J Mol Biol 220:659–671

    Article  CAS  PubMed  Google Scholar 

  12. Pavesi A, Conterio F, Bolchi A, Dieci G, Ottonello S (1994) Identification of new eukaryotic tRNA genes in genomic DNA databases by a multistep weight matrix analysis of transcriptional control regions. Nucleic Acids Res 22:1247–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Eddy SR, Durbin R (1994) RNA sequence analysis using covariance models. Nucleic Acids Res 22:2079–2088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Laslett D, Canbäck B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Laslett D, Canbäck B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24:172–175

    Article  CAS  PubMed  Google Scholar 

  16. Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF (2012) Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res 40:2833–2845

    Article  PubMed Central  PubMed  Google Scholar 

  17. Donath A, Bernt M, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: Standardizing and improving metazoan mitochondrial genome annotation. Mol Phylog Evol 69:313–319

    Article  Google Scholar 

  18. Haugen P, Simon DM, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:111–119

    Article  CAS  PubMed  Google Scholar 

  19. Randau L, Münch R, Hohn MJ, Jahn D, Söll D (2005) Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5’- and 3’-halves. Nature 433:537–541

    Article  CAS  PubMed  Google Scholar 

  20. Fujishima K, Sugahara J, Kikuta K, Hirano R, Sato A, Tomita M, Kanai A (2009) Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea. Proc Natl Acad Sci USA 106:2683–2687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Maruyama S, Sugahara J, Kanai A, Nozaki H (2010) Permuted tRNA genes in the nuclear and nucleomorph genomes of photosynthetic eukaryotes. Mol Biol Evol 27:1070–1076

    Article  CAS  PubMed  Google Scholar 

  22. Muench R, Randau L (2003) Split-tRNA- Search. http://www.prodoric.de/sts/. Accessed 9 Nov 2013

  23. Kim YK, Mizutani K, Rhee KH, Nam KH, Lee WH, Lee EH, Kim EE, Park SY, Hwang KY (2007) Structural and mutational analysis of tRNA intron-splicing endonuclease from Thermoplasma acidophilum DSM 1728: catalytic mechanism of tRNA intron-splicing endonucleases. J Bacteriol 189:8339–8346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sugahara J, Yachie N, Arakawa K, Tomita M (2007) In silico screening of archaeal tRNA-encoding genes having multiple introns with bulge-helix-bulge splicing motifs. RNA 13:671–681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sugahara J, Yachie N, Sekine Y, Soma A, Matsui M, Tomita M, Kanai A (2006) SPLITS: a new program for predicting split and intron-containing tRNA genes at the genome level. In Silico Biol 6:411–418

    CAS  PubMed  Google Scholar 

  26. Marck C, Grosjean H (2003) tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8:1189–1232

    Article  Google Scholar 

  27. Keiler KC (2008) Biology of trans-translation. Annu Rev Microbiol 62:133–151

    Article  CAS  PubMed  Google Scholar 

  28. Mao C, Bhardwaj K, Sharkady SM, Fish RI, Driscoll T, Wower J, Zwieb C, Sobral BW, Williams KP (2009) Variations on the tmRNA gene. RNA Biol 6:355–361

    Article  CAS  PubMed  Google Scholar 

  29. Laslett D, Canbäck B, Andersson S (2002) BRUCE: a program for the detection of transfer-messenger RNA genes in nucleotide sequences. Nucleic Acids Res 30:3449–3453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Eddy S (1998) Profile hidden markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  32. Huang Y, Gilna P, Li W (2009) Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25:1338–1340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rosenblad MA, Larsen N, Samuelsson T, Zwieb C (2009) Kinship in the SRP RNA family. RNA Biol 6:508–516

    Article  CAS  PubMed  Google Scholar 

  34. Donath A, Findeiß S, Hertel J, Marz M, Otto W, Schulz C, Stadler PF, Wirth S (2010) Non-coding RNAs. InCaetano-Anolles G (ed) Evolutionary genomics and systems biology. Wiley-Blackwell, Hoboken, NJ, pp 251–293

    Google Scholar 

  35. Regalia M, Rosenblad MA, Samuelsson T (2002) Prediction of signal recognition particle RNA genes. Nucleic Acids Res 30:3368–3377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Walker SC, Engelke DR (2008) A protein-only RNase P in human mitochondria. Cell 135:412–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Randau L, Schröder I, Söll D (2008) Life without RNase P. Nature 453:120–123

    Article  CAS  PubMed  Google Scholar 

  38. Piccinelli P, Rosenblad MA, Samuelsson T (2005) Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes. Nucleic Acids Res 33:4485–4495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lai LB, Chan PP, Cozen AE, Bernick DL, Brown JW, Gopalan V, Lowe TM (2010) Discovery of a minimal form of RNase P in Pyrobaculum. Proc Natl Acad Sci USA 107:22493–22498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li Y, Altman S (2004) In search of RNase P RNA from microbial genomes. RNA 10:1533–1540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Yusuf D, Marz M, Stadler PF, Hofacker IL (2010) Bcheck: a wrapper tool for detecting RNase P RNA genes. BMC Bioinformatics 11:432

    Google Scholar 

  42. Brown JW (1999) The Ribonuclease P Database. Nucleic Acids Res 27:314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Frank DN, Adamidi C, Ehringer MA, Pitulle C, Pace NR (2000) Phylogenetic-comparative analysis of the eukaryal ribonuclease P RNA. RNA 6:1895–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Infernal 1.0: Inference of RNA Alignments (2009) Nawrocki, e. p. and kolbe, d. l. and eddy, s. r. Bioinformatics 25:1335–1337

    Google Scholar 

  45. Esakova O, Krasilnikov AS (2010) Of proteins and RNA: the RNase P/MRP family. RNA 16:1725–1747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N, Kasim V, Hayashizaki Y, Hahn WC, Masutomi K (2009) An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461:230–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Dávila López M, Rosenblad MA, Samuelsson T (2009) Conserved and variable domains of RNase MRP RNA. RNA Biol 6:208–220

    Article  PubMed  Google Scholar 

  48. Woodhams MD, Stadler PF, Penny D, Collins LJ (2007) RNAse MRP and the RNA processing cascade in the eukaryotic ancestor. BMC Evol Biol 7:S13

    Article  PubMed Central  PubMed  Google Scholar 

  49. Reichow SL, Hamma T, Ferré-D’Amaré AR, Varani G (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35:1452–1464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Samarsky DA, Fournier MJ, Singer RH, Bertrand E (1998) The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO 17:3747–3757

    Article  CAS  Google Scholar 

  51. Bachellerie JP, Cavaillé J, Hüttenhofer A (2002) The expanding snoRNA world. Biochimie 84:775–790

    Article  CAS  PubMed  Google Scholar 

  52. Terns MP, Terns RM (2002) Small nucleolar RNAs: Versatile trans-acting molecules of ancient evolutionary origin. Gene Expr 10:17–39

    CAS  PubMed  Google Scholar 

  53. Gall JG (2003) The centennial of the Cajal body. Nat Rev Mol Cell Biol 4:975–980

    Article  CAS  PubMed  Google Scholar 

  54. Darzacq X, Jády BE, Verheggen C, Kiss AM, Bertrand E, Kiss T (2002) Cajal body-specific small nuclear RNAs: a novel class of 2’-O-methylation and pseudouridylation guide RNAs. EMBO J 21:2746–2756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Ziesche SM, Omer AD, Dennis PP (2004) RNA-guided nucleotide modification of ribosomal and non-ribosomal RNAs in Archaea. Mol Microbiol 54:980–993

    Article  CAS  PubMed  Google Scholar 

  56. Ni J, Tien AL, Fournier MJ (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565–573

    Article  CAS  PubMed  Google Scholar 

  57. Edvardsson S, Gardner PP, Poole AM, Hendy MD, Penny D, Moulton V (2002) A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction. Bioinformatics 19:865–873

    Article  Google Scholar 

  58. Freyhult E, Edvardsson S, Tamas I, Moulton V, Poole AM (2008) Fisher: a program for the detection of H/ACA snoRNAs using MFE secondary structure prediction and comparative genomics—assessment and update. BMC Res Notes 1:49

    Google Scholar 

  59. Schattner P, Decatur WA, Davis CA, Ares M, Fournier MJ, Lowe TM (2004) Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res 32:4281–4296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Schattner P, Barberan-Soler S, Lowe TM (2006) A computational screen for mammalian pseudouridylation guide H/ACA RNAs. Bioinformatics 12:15–25

    CAS  Google Scholar 

  61. Lowe TM, Eddy SR (1999) A computational screen for methylation guide snoRNAs in yeast. Science 19:1168–1171

    Article  Google Scholar 

  62. Chen XS, Rozhdestvensky TS, Collins LJ, Schmitz J, Penny D (2007) Combined experimental and computational approach to identify non-protein-coding RNAs in the deep-branching eukaryote Giardia intestinalis. Nucleic Acids Res 35:4619–4628

    Article  CAS  PubMed  Google Scholar 

  63. Fedorov A, Stombaugh J, Harr MW, Yu S, Nasalean L, Shepelev V (2005) Computer identification of snoRNA genes using a Mammalian Orthologous Intron Database. Nucleic Acids Res 33:4578–4583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Hüttenhofer A, Kiefmann M, Meier-Ewert S, O’Brien J, Lehrach H, Bachellerie JP, Brosius J (2001) RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J 20:2943–2953

    Article  PubMed Central  PubMed  Google Scholar 

  65. Rogelj B (2006) Brain-specific small nucleolar RNAs. J Mol Neurosci 28:103–109

    Article  CAS  PubMed  Google Scholar 

  66. Yang JH, Zhang XC, Huang ZP, Zhou H, Huang MB, Zhang S, Chen YQ, Qu LH (2006) snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome. Nucleic Acids Res 34:5112–5123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Hertel J, Hofacker IL, Stadler PF (2008) snoReport: Computational identification of snoRNAs with unknown targets. Bioinformatics 24:158–164

    Article  CAS  PubMed  Google Scholar 

  68. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh. Chem 125:167–188

    Article  CAS  Google Scholar 

  69. Marz M, Stadler PF (2009) Comparative analysis of eukaryotic U3 snoRNAs. RNA Biol 6:503–507

    Article  CAS  PubMed  Google Scholar 

  70. Bazeley PS, Shepelev V, Talebizadeh Z, Butler MG, Fedorova L, Filatov V, Fedorov A (2008) snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions. Gene 408:172–179

    Article  CAS  PubMed  Google Scholar 

  71. Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL (2006) Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1:3

    Article  PubMed Central  PubMed  Google Scholar 

  72. Kehr S, Bartschat S, Stadler PF, Tafer H (2011) PLEXY: Efficient target prediction for box C/D snoRNAs. Bioinformatics 27:279–280

    Article  CAS  PubMed  Google Scholar 

  73. Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663

    Article  CAS  PubMed  Google Scholar 

  74. Chen CL, Perasso R, Qu LH, Amar L (2007) Exploration of pairing constraints identifies a 9 base-pair core within box C/D snoRNA-rRNA duplexes. J Mol Biol 369:771–783

    Article  CAS  PubMed  Google Scholar 

  75. Tafer H, Kehr S, Hertel J, Stadler PF (2010) RNAsnoop: Efficient target prediction for box H/ACA snoRNAs. Bioinformatics 26:610–616

    Article  CAS  PubMed  Google Scholar 

  76. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  77. Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, Banfi VA, Gennarino S, Horner DS, Pavesi G, Picardi E, Pesole G (2010) UTRdb and UTRsite (release 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38:D75–D80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Kingsford CL, Ayanbule K, Salzberg SL (2007) Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8:R22

    Article  PubMed Central  PubMed  Google Scholar 

  79. Lisacek F, Diaz Y, Michel F (1994) Automatic identification of group I intron cores in genomic DNA sequences. J Mol Biol 235:1206–1217

    Article  CAS  PubMed  Google Scholar 

  80. Zhou Y, Lu C, Wu QJ, Wang Y, Sun ZT, Deng JC, Zhang Y (2008) GISSD: Group I intron sequence and structure database. Nucleic Acids Res 36:D31–D17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Töpfer A (2011) Prediction of group I introns under structure variation. Master’s Thesis, University of Bielefeld

    Google Scholar 

  82. Höchsmann T, Höchsmann M, Giegerich R (2006) Thermodynamic matchers: strengthening the significance of RNA folding energies. Comput Syst Bioinformatics Conf, pp 111–121

    Google Scholar 

  83. Podlevsky JD, Bley CJ, Omana RV, Qi X, Chen JJ (2008) The telomerase database. Nucleic Acids Res 36:D339–D343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Menzel P, Gorodkin J, Stadler PF (2009) The tedious task of finding homologous non-coding RNA genes. RNA 15:2075–2082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Gruber A, Kilgus C, Mosig A, Hofacker IL, Hennig W, Stadler PF (2008) Arthropod 7SK RNA. Mol Biol Evol 25:1923–1930

    Article  CAS  PubMed  Google Scholar 

  86. Mosig A, Guofeng M, Stadler BMR, Stadler PF (2007) Evolution of the vertebrate Y RNA cluster. Theory Biosci 126:9–14

    Article  CAS  PubMed  Google Scholar 

  87. Stadler PF, Chen JJ, Hackermüller J, Hoffmann S, Horn F, Khaitovich P, Kretzschmar AK, Mosig A, Prohaska SJ, Qi X, Schutt K, Ullmann K (2009) Evolution of vault RNAs. Mol. Biol. Evol. 26:1975–1991

    Article  CAS  PubMed  Google Scholar 

  88. Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23:614–622

    Article  CAS  PubMed  Google Scholar 

  89. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, SnoScan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stadler, P.F. (2014). Class-Specific Prediction of ncRNAs. In: Gorodkin, J., Ruzzo, W. (eds) RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Methods in Molecular Biology, vol 1097. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-709-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-709-9_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-708-2

  • Online ISBN: 978-1-62703-709-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics