Skip to main content

Stable Expression Clones and Auto-Induction for Protein Production in E. coli

  • Protocol
  • First Online:
Structural Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1091))

Abstract

Inducible production of proteins from cloned genes in E. coli is widely used, economical, and effective. However, common practices can result in unintended induction, inadvertently generating cultures that give poor or variable yields in protein production. Recipes are provided for (1) defined culture media in which expression strains grow to saturation without induction, thereby ensuring stable frozen stocks and seed cultures with high fractions of fully inducible cells, and (2) defined or complex media that maintain the same high fraction of inducible cells until auto-induction in late log phase to produce fully induced high-density cultures at saturation. Simply inoculating a suitable auto-inducing medium from such a seed culture and growing to saturation generally produces much higher levels of target protein per volume of culture than monitoring culture growth and adding IPTG or other inducer at the appropriate cell density. Many strains may be conveniently screened in parallel, and burdensome inoculation with fresh colonies, sometimes employed in hopes of assuring high yields, is entirely unnecessary. These media were developed for the T7 expression system using pET vectors in BL21(DE3) but are suitable or adaptable for other inducible expression systems in E. coli and for labeling proteins with selenomethionine for X-ray crystallography or with stable isotopes for NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  PubMed  Google Scholar 

  2. Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44

    Article  CAS  PubMed  Google Scholar 

  3. Dubendorff JW, Studier FW (1991) Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol 219:45–59

    Article  CAS  PubMed  Google Scholar 

  4. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  CAS  PubMed  Google Scholar 

  5. Grossman TH, Kawasaki ES, Punreddy SR, Osburne MS (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209:95–103

    Article  CAS  PubMed  Google Scholar 

  6. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  7. Xu J, Banerjee A, Pan S-H, Li ZJ (2012) Galactose can be an inducer for production of therapeutic proteins by auto-induction using E. coli BL21 strains. Protein Expr Purif 83:30–36

    Article  CAS  PubMed  Google Scholar 

  8. Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF (2009) Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes. J Mol Biol 394:653–680

    Article  CAS  PubMed  Google Scholar 

  9. Adhya S, Echols H (1966) Glucose effect and the galactose enzymes of E. coli: Correlation between glucose inhibition of induction and inducer transport. J Bacteriol 92:601–608

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work was supported by the Office of Biological and Environmental Research of the US Department of Energy, the Protein Structure Initiative of the National Institute of General Medical Sciences of the National Institutes of Health, as part of the New York Structural Genomics Research Consortium, and by internal research funding from Brookhaven National Laboratory.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Studier, F.W. (2014). Stable Expression Clones and Auto-Induction for Protein Production in E. coli . In: Chen, Y. (eds) Structural Genomics. Methods in Molecular Biology, vol 1091. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-691-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-691-7_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-690-0

  • Online ISBN: 978-1-62703-691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics