Skip to main content

Morpholino Studies in Xenopus Brain Development

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1082))

Abstract

Antisense morpholino oligonucleotides (MOs) have become a valuable method to knock down protein levels, to block mRNA splicing, and to interfere with miRNA function. MOs are widely used to alter gene expression during development of Xenopus and zebra fish, where they are typically injected into the fertilized egg or blastomeres. Here, we present methods to use electroporation to target delivery of MOs to the central nervous system of Xenopus laevis or Xenopus tropicalis tadpoles. Briefly, MO electroporation is accomplished by injecting MO solution into the brain ventricle and driving the MOs into cells in the brain with current passing between two platinum plate electrodes, positioned on either side of the target brain area. The method is straightforward and uses standard equipment found in many neuroscience labs. A major advantage of electroporation is that it allows spatial and temporal control of MO delivery and therefore knockdown. Co-electroporation of MOs with cell-type specific fluorescent protein expression plasmids allows morphological analysis of cellular phenotypes. Furthermore, co-electroporation of MOs with rescuing plasmids allows assessment of specificity of the knockdown and phenotypic outcome. By combining MO-mediated manipulations with sophisticated assays of neuronal function, such as electrophysiological recording, behavioral assays, or in vivo time-lapse imaging of neuronal development, the functions of specific proteins and miRNAs within the developing nervous system can be elucidated. These methods can be adapted to apply antisense morpholinos to study protein and RNA function in a variety of complex tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C et al (2007) p53 activation by knockdown technologies. PLoS Genet 3:e78

    Article  PubMed  Google Scholar 

  2. Hardy S, Legagneux V, Audic Y, Paillard L (2010) Reverse genetics in eukaryotes. Biol Cell 102:561–580

    Article  PubMed  CAS  Google Scholar 

  3. Eisen JS, Smith JC (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135:1735–1743

    Article  PubMed  CAS  Google Scholar 

  4. Summerton JE (2007) Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects adn sequence specificity. Curr Top Med Chem 7:651–660

    Article  PubMed  CAS  Google Scholar 

  5. Chen CM, Chiu SL, Shen W, Cline HT (2009) Co-expression of Argonaute2 enhances short hairpin RNA-induced RNA interference in Xenopus CNS neurons in vivo. Front Neurosci 3:63

    PubMed  Google Scholar 

  6. Lund E, Sheets MD, Imboden SB, Dahlberg JE (2011) Limiting ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. Genes Dev 25:1121–1131

    Article  PubMed  CAS  Google Scholar 

  7. Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30:154–156

    Article  PubMed  CAS  Google Scholar 

  8. Morcos PA (2007) Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochem Biophys Res Commun 358:521–527

    Article  PubMed  CAS  Google Scholar 

  9. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5:e203

    Article  PubMed  Google Scholar 

  10. Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318:271–274

    Article  PubMed  CAS  Google Scholar 

  11. Bruno IG, Jin W, Cote GJ (2004) Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Hum Mol Genet 13:2409–2420

    Article  PubMed  CAS  Google Scholar 

  12. Heasman J, Kofron M, Wylie C (2000) Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222:124–134

    Article  PubMed  CAS  Google Scholar 

  13. Tandon P, Showell C, Christine K, Conlon FL (2012) Morpholino injection in Xenopus. Methods Mol Biol 843:29–46

    Article  PubMed  CAS  Google Scholar 

  14. S-i O, Mann F, Boy S, Perron M, Harris WA (2002) Lipofection strategy for the study of Xenopus retinal development. Methods 28:411–419

    Article  Google Scholar 

  15. Ando H, Okamoto H (2006) Efficient transfection strategy for the spatiotemporal control of gene expression in zebrafish. Mar Biotechnol (NY) 8:295–303

    Article  CAS  Google Scholar 

  16. Sasagawa S, Takabatake T, Takabatake Y, Muramatsu T, Takeshima K (2002) Improved mRNA electroporation method for Xenopus neurula embryos. Genesis 33:81–85

    Article  PubMed  CAS  Google Scholar 

  17. Eide FF, Eisenberg SR, Sanders TA (2000) Electroporation-mediated gene transfer in free-swimming embryonic Xenopus laevis. FEBS Lett 486:29–32

    Article  PubMed  CAS  Google Scholar 

  18. Bestman JE, Ewald RC, Chiu SL, Cline HT (2006) In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat Protoc 1:1267–1272

    Article  PubMed  Google Scholar 

  19. Falk J, Drinjakovic J, Leung K, Dwivedy A, Regan A et al (2007) Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus. BMC Dev Biol 7:107

    Article  PubMed  Google Scholar 

  20. Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo–from single cells to the entire brain. Differentiation 70:148–154

    Article  PubMed  CAS  Google Scholar 

  21. Haas K, Sin W-C, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29:583–591

    Article  PubMed  CAS  Google Scholar 

  22. Javaherian A, Cline HT (2005) Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo. Neuron 45:505–512

    Article  PubMed  CAS  Google Scholar 

  23. Ruthazer ES, Li J, Cline HT (2006) Stabilization of axon branch dynamics by synaptic maturation. J Neurosci 26:3594–3603

    Article  PubMed  CAS  Google Scholar 

  24. Osterele A (2011) P-1000 & P-97 pipette cookbook, 2011. In:Rev G (ed) Sutter Instrument Company

    Google Scholar 

  25. Koster RW, Fraser SE (2001) Tracing transgene expression in living zebrafish embryos. Dev Biol 233:329–346

    Article  PubMed  CAS  Google Scholar 

  26. Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis (Daudin); a systemical and chronological survey of the development from fertilized egg till the end of metamorphosis. North-Holland Publishing Co, Amsterdam, p 243

    Google Scholar 

  27. Bedell VM, Westcot SE, Ekker SC (2011) Lessons from morpholino-based screening in zebrafish. Brief Funct Genomics 10:181–188

    Article  PubMed  CAS  Google Scholar 

  28. Kos R, Tucker RP, Hall R, Duong TD, Erickson CA (2003) Methods for introducing morpholinos into the chicken embryo. Dev Dyn 226:470–477

    Article  PubMed  CAS  Google Scholar 

  29. Bestman JE, Lee-Osbourne J, Cline HT (2012) In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles. J Comp Neurol 520:401–433

    Article  PubMed  Google Scholar 

  30. Sauka-Spengler T, Barembaum M (2008) Gain- and loss-of-function approaches in the chick embryo. Methods Cell Biol 87:237–256

    Article  PubMed  CAS  Google Scholar 

  31. Bestman JE, Cline HT (2008) The RNA binding protein CPEB regulates dendrite morphogenesis and neuronal circuit assembly in vivo. Proc Natl Acad Sci USA 105:20494–20499

    Article  PubMed  CAS  Google Scholar 

  32. Chiu S-L, Chen C-M, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58:708–719

    Article  PubMed  CAS  Google Scholar 

  33. Shen W, McKeown CR, Demas JA, Cline HT (2011) Inhibition to excitation ratio regulates visual system responses and behavior in vivo. J Neurophysiol 106(5):2285–2302

    Article  PubMed  CAS  Google Scholar 

  34. Sharma P, Cline HT (2010) Visual activity regulates neural progenitor cells in developing Xenopus CNS through musashi1. Neuron 68:442–455

    Article  PubMed  CAS  Google Scholar 

  35. Schwartz N, Schohl A, Ruthazer ES (2011) Activity-dependent transcription of BDNF enhances visual acuity during development. Neuron 70:455–467

    Article  PubMed  CAS  Google Scholar 

  36. Ewald RC, Van Keuren-Jensen KR, Aizenman CD, Cline HT (2008) Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo. J Neurosci 28:850–861

    Article  PubMed  CAS  Google Scholar 

  37. Zhao Y, Ishibashi S, Amaya E (2012) Reverse genetic studies using antisense morpholino oligonucleotides. Methods Mol Biol 917:143–154

    Article  PubMed  CAS  Google Scholar 

  38. Rana AA, Collart C, Gilchrist MJ, Smith JC (2006) Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. PLoS Genet 2:1751–1772

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bestman, J.E., Cline, H.T. (2014). Morpholino Studies in Xenopus Brain Development. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 1082. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-655-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-655-9_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-654-2

  • Online ISBN: 978-1-62703-655-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics