Skip to main content

Frequency Domain Fluorometry: Theory and Application

  • Protocol
  • First Online:
Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Frequency domain fluorometry is a widely utilized tool in the physical, chemical, and biological sciences. This chapter focuses on the theory of the method and the practical aspects required to carry out intensity decay, i.e., lifetime measurements on a modern frequency domain fluorometer. Several chemical/biological systems are utilized to illustrate data acquisition protocols. Data analysis procedures and methodologies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence principles and applications, 2nd edn. Weinheim, Germany

    Book  Google Scholar 

  2. Gaviola E (1926) Die Abklingungszeiten der Fluoreszenz von Farbstofflösungen. Ann Phys 386:681–710

    Article  Google Scholar 

  3. Gaviola E (1927) Ein Fluorometer. Apparat zur Messung von Fluoreszenzabklingungszeiten. Z Phys 42:853–861

    Article  CAS  Google Scholar 

  4. Dushinsky F (1933) Der zeitliche Intensitätsverlauf von intermittierend angeregter Resonanzstrahlung. Z Phys 81:7–22

    Article  Google Scholar 

  5. Spencer RD, Weber G (1969) Measurements of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer. Ann N Y Acad Sci 158:361–376

    Article  CAS  Google Scholar 

  6. Gratton E, Limkeman M (1983) A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J 44:315–324

    Article  PubMed  CAS  Google Scholar 

  7. Weber G (1981) Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements. J Phys Chem 85:949–953

    Article  CAS  Google Scholar 

  8. Jameson DM, Gratton E, Hall RD (1984) The measurement of heterogeneous emission by multifrequency phase and modulation fluorometry. Appl Spectrosc Rev 20:55–106

    Article  CAS  Google Scholar 

  9. Štefl M, James NG, Ross JA et al (2011) Applications of phasors to in vitro time-resolved fluorescence measurements. Anal Biochem 410:62–69

    Article  PubMed  Google Scholar 

  10. James NG, Ross JA, Štefl M et al (2011) Applications of phasor plots to in vitro protein studies. Anal Biochem 410:70–76

    Article  PubMed  CAS  Google Scholar 

  11. Buscaglia R, Jameson DM, Chaires JB (2012) G-Quadruplex structure and stability illuminated by 2-aminopurine phasor plots. Nucleic Acids Res 40:4203–4215

    Article  PubMed  CAS  Google Scholar 

  12. Digman MA et al (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16

    Article  PubMed  CAS  Google Scholar 

  13. Hanley QS, Clayton AHA (2005) AB-plot assisted determination of fluorophore mixtures in a fluorescence microscope using spectra quenchers. J Microsc 218:62–67

    Article  PubMed  CAS  Google Scholar 

  14. Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15:805–815

    Article  PubMed  CAS  Google Scholar 

  15. Ross JA, Jameson DM (2008) Time-resolved methods in biophysics. Frequency domain fluorometry: applications to intrinsic protein fluorescence. Photochem Photobiol Sci 7:1301–1312

    Article  PubMed  CAS  Google Scholar 

  16. Gratton E, Jameson DM, Hall RD (1984) Multifrequency phase and modulation fluorometry. Annu Rev Biophys Bioeng 13:105–124

    Article  PubMed  CAS  Google Scholar 

  17. Spencer RD, Weber G (1970) Influence of Brownian rotations and energy transfer upon the measurement of fluorescence lifetimes. J Chem Phys 52:1654–1663

    Article  CAS  Google Scholar 

  18. Teale FWJ (1983) Phase and modulation fluorometry. In: Cundell RB, Dale RE (eds) Time–resolved fluorescence spectroscopy in biochemistry and biology. Plenum Press, New York, pp 59–80

    Chapter  Google Scholar 

  19. Jameson DM, Weber G (1981) Resolution of the pH-dependent heterogeneous fluorescence decay of tryptophan by phase and modulation measurements. J Phys Chem 85:953–958

    Article  CAS  Google Scholar 

  20. Boens N, Qin W, Basarić N et al (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79:2137–2149

    Article  PubMed  CAS  Google Scholar 

  21. Helms MK, Peterson CE, Bhagavan NV et al (1997) Time-resolved fluorescence studies on site-directed mutants of human serum albumin. FEBS Lett 408:67–70

    Article  PubMed  CAS  Google Scholar 

  22. Alcala R, Gratton E, Prendergast FG (1987) Resolvability of fluorescence lifetime distributions using phase fluorometry. Biophys J 51:587–596

    Article  PubMed  CAS  Google Scholar 

  23. Alcala JR, Gratton E, Prendergast FG (1987) Fluorescence lifetime distributions in proteins. Biophys J 51:597–604

    Article  PubMed  CAS  Google Scholar 

  24. Alcala R, Gratton E, Prendergast FG (1987) Interpretation of fluorescence decays in proteins using continuous lifetime distributions. Biophys J 51:925–936

    Article  PubMed  CAS  Google Scholar 

  25. Barbieri B, Terpetschnig E, Jameson DM (2005) Frequency-domain fluorescence spectroscopy using 280-nm and 300-nm light-emitting diodes: measurement of proteins and protein-related fluorophores. Anal Biochem 344:298–300

    Article  PubMed  CAS  Google Scholar 

  26. Weber G, Teale FWJ (1957) Ultraviolet fluorescence of aromatic amino acids. Biochem J 65:476–482

    PubMed  Google Scholar 

  27. Tramier M, Holub O, Croney JC, Ishii T, Seifried SE, Jameson DM (2002) Binding of ethidium to Yeast tRNAPhe: a new perspective on an old bromide. In: Kraayenhof R, Visser AJWG, Gerritsen HC (eds) Fluorescence spectroscopy, Imaging and Probes. Springer, Berlin, pp 111–120

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially supported by funding from Allergan, Inc.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vetromile, C.M., Jameson, D.M. (2014). Frequency Domain Fluorometry: Theory and Application. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics