Skip to main content

Immobilization of Enzymes on Monofunctional and Heterofunctional Epoxy-Activated Supports

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1051))

Abstract

The immobilization of proteins on epoxy activated supports is discussed in this chapter. Immobilization on epoxy supports is carried out as a two-step mechanism: in the first step the adsorption of the protein is promoted and in the second step the intramolecular covalent linkage among epoxy groups and nucleophiles of the protein is produced. Based on this mechanism of the need of a first adsorption of the protein on the support, different epoxy supports are described. The different supports are able to immobilize proteins through different orientations being obtained catalysts with different properties of activity, stability, and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chibata I, Tosa T, Sato T (1986) Biocatalysis: immobilized cells and enzymes. J Mol Catal 37:1–24

    Article  CAS  Google Scholar 

  2. Guisan JM (ed) (2006) Immobilization of enzymes and cells, 2nd edn. Humana, Totowa, NJ

    Google Scholar 

  3. Gupta MN (1991) Thermostatization of proteins. Biotechnol Appl Biochem 4:1–11

    Google Scholar 

  4. Hartmeier W (1985) Immobilized biocatalysts-from simple to complex systems. Trends Biotechnol 3:149–153

    Article  CAS  Google Scholar 

  5. Katchalski-Katzir E (1993) Immobilized enzymes-learning from past successes and failures. Trends Biotechnol 11:471–478

    Article  PubMed  CAS  Google Scholar 

  6. Kennedy JF, Melo EHM, Jumel K (1990) Immobilized enzymes and cells. Chem Eng Prog 45:81–89

    Google Scholar 

  7. Klibanov AM (1983) Immobilized enzymes and cells as practical catalysts. Science 219:722–727

    Article  PubMed  CAS  Google Scholar 

  8. Rosevear A (1984) Immobilized biocatalysts: a critical review. J Chem Technol Biotechnol 34B:127–150

    CAS  Google Scholar 

  9. Royer GP (1980) Immobilized enzymes as catalyst. Catal Rev 22:29–73

    Article  CAS  Google Scholar 

  10. Mateo C, Abian O, Fernandez-Lafuente R, Guisan JM (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme Microb Technol 26:509–515

    Article  PubMed  CAS  Google Scholar 

  11. Kramer DM, Lehmann K, Pennewiss H, Plainer H (1979) Oxirane acrylic beads for protein immobilization: a novel matrix for biocatalysis and biospecific adsorption. 26th international IUPAC symposium on macromolecules, Mainz, Germany

    Google Scholar 

  12. Melander W, Corradini D, Hoorvath C (1984) Salt-mediated retention of proteins in hydrophobic-interaction chromatography. Application of solvophobic theory. J Chromatogr 317:67–85

    Article  PubMed  CAS  Google Scholar 

  13. Smalla K, Turkova J, Coupek J, Herman P (1988) Influence of saltson the covalent immobilization of proteins to modified copolymers of 2-hydroxyethyl methacrylate with ethylene dimetacrylate. Biotechnol Appl Biochem 10:21–31

    PubMed  CAS  Google Scholar 

  14. Wheatley JB, Schmidt DE (1993) Salt induced immobilization of proteins on a high-performance liquid chromatographic epoxide affinity support. J Chromatogr 644:11–16

    Article  CAS  Google Scholar 

  15. Wheatley JB, Schmidt DE (1999) Salt induced immobilization of affinity ligands onto epoxide-activated supports. J Chromatogr A 849:1–12

    Article  PubMed  CAS  Google Scholar 

  16. Fitzpatrick PA, Steinmetz ACU, Ringe D, Klibanov AM (1993) Enzyme crystal structure in a neat organic solvent. Proc Natl Acad Sci U S A 90:8653–8657

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez-Lafuente R (2009) Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb Technol 45:405–418

    Article  CAS  Google Scholar 

  18. Mateo C, Fernández-Lorente G, Abian O, Fernández-Lafuente R, Guisán JM (2000) Multifunctional epoxy-supports: a new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage. Biomacromolecules 1:739–745

    Article  PubMed  CAS  Google Scholar 

  19. Torres R, Mateo C, Fernández-Lorente G, Ortiz C, Fuentes M, Palomo JM, Guisan JM, Fernandez-Lafuente R (2003) A novel heterofunctional epoxy-amino Sepabeads for a new enzyme immobilization protocol: immobilization-stabilization of beta-galactosidase from Aspergillus oryzae. Biotechnol Progr 19:1056–1060

    Article  CAS  Google Scholar 

  20. Mateo C, Torres R, Fernández-Lorente G, Ortiz C, Fuentes M, Hidalgo A, López-Gallego F, Abian O, Palomo JM, Betancor L, Pessela BCC, Guisan JM, Fernández-Lafuente R (2003) Epoxy-amino groups: a new tool for improved immobilization of proteins by the epoxy method. Biomacromolecules 4:772–777

    Article  PubMed  CAS  Google Scholar 

  21. Grazu V, Olga Abian O, Mateo C, Batista-Viera F, Fernandez-Lafuente R, Guisan JM (2003) Novel bifunctional epoxy/thiol-reactive support to immobilize thiol containing proteins by the epoxy chemistry. Biomacromolecules 4:1495–1501

    Article  PubMed  CAS  Google Scholar 

  22. Grazu V, Abian O, Mateo C, Batista-Viera F, Fernandez-Lafuente R, Guisan JM (2005) Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxy-thiol supports. Biotechnol Bioeng 90:597–605

    Article  PubMed  CAS  Google Scholar 

  23. Hermanson GT (1996) Bioconjugate techniques. Academic, San Diego, pp 56–80

    Google Scholar 

  24. Grazu V, López-Gallego F, Guisán JM (2012). Tailor-made design of penicillin G acylase surface enables its site-directed immobilization and stabilization onto commercial mono-functional epoxy supports. Proc Biochem 47:2538–2541. DOI: 10.1016/j.procbio.2012.07.010

    Google Scholar 

  25. Pessela BCC, Vian A, Mateo C, Fernandez-Lafuente R, Garcia JL, Guisan JM, Carrascosa AV (2003) Overproduction of thermus sp. strain T2 β-galactosidase in Escherichia coli and preparation by using tailor-made metal chelate supports. Appl Environ Microbiol 69:1967–1972

    Article  PubMed  CAS  Google Scholar 

  26. Mateo C, Grazu V, Palomo JM, Lopez-Gallego F, Fernandez-Lafuente R, Guisan JM (2007) Immobilization of enzymes on heterofunctional epoxy supports. Nat Protoc 2:1022–1033

    Article  PubMed  CAS  Google Scholar 

  27. Brocklehurst K, Carlsson J, Kierstan M, Crook E (1973) Covalent chromatography. Preparation of fully active papain from dried papaya latex. Biochem J 133:573–584

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Mateo, C., Grazu, V., Guisan, J.M. (2013). Immobilization of Enzymes on Monofunctional and Heterofunctional Epoxy-Activated Supports. In: Guisan, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 1051. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-550-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-550-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-549-1

  • Online ISBN: 978-1-62703-550-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics