Skip to main content

Modulation of the Host Skeletal Muscle Niche for Donor Satellite Cell Grafting

  • Protocol
  • First Online:
Book cover Stem Cell Niche

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1035))

Abstract

Skeletal muscle tissue has a remarkable capability of regenerating in pathological conditions or after injury. The principal muscle stem cells, satellite cells, are responsible for this prompt and efficient process. Normally quiescent in their niches underneath the basal lamina of each muscle fiber, satellite cells become activated to repair or form new fibers. Ideally, healthy donor stem cells could be transplanted to regenerate the skeletal muscle tissue to repair a genetic defect. However, to be efficient, cell grafting requires modulation of the host muscle environment to allow homing of, and regeneration by, donor satellite cells. Here, we provide methods to modulate the host mouse muscle environment in order to destroy or preserve the muscle niche before transplanting donor satellite cells. We also describe methods to investigate donor-derived muscle regeneration and self-renewal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238

    Article  PubMed  CAS  Google Scholar 

  2. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  CAS  Google Scholar 

  3. Boldrin L, Muntoni F, Morgan JE (2010) Are human and mouse satellite cells really the same? J Histochem Cytochem 58(11):941–955. doi:10.1369/jhc.2010.956201

    Article  PubMed  CAS  Google Scholar 

  4. Boldrin L, Neal A, Zammit PS, Muntoni F, Morgan JE (2012) Donor satellite cell engraftment is significantly augmented when the host niche is preserved and endogenous satellite cells are incapacitated. Stem Cells 30(9):1971–1984. doi:10.1002/stem.1158

    Article  PubMed  Google Scholar 

  5. Harris JB (2003) Myotoxic phospholipases A2 and the regeneration of skeletal muscles. Toxicon 42(8):933–945

    Article  PubMed  CAS  Google Scholar 

  6. McGeachie JK, Grounds MD, Partridge TA, Morgan JE (1993) Age-related changes in replication of myogenic cells in mdx mice: quantitative autoradiographic studies. J Neurol Sci 119(2):169–179

    Article  PubMed  CAS  Google Scholar 

  7. Emery AE (2002) The muscular dystrophies. Lancet 359(9307):687–695. doi:S0140-6736(02)07815-7, [pii] 10.1016/S0140-6736(02)07815-7

    Article  PubMed  CAS  Google Scholar 

  8. Malerba A, Sharp PS, Graham IR, Arechavala-Gomeza V, Foster K, Muntoni F, Wells DJ, Dickson G (2011) Chronic systemic therapy with low-dose morpholino oligomers ameliorates the pathology and normalizes locomotor behavior in mdx mice. Mol Ther 19(2):345–354. doi:10.1038/mt.2010.261

    Article  PubMed  CAS  Google Scholar 

  9. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337(6203):176–179

    Article  PubMed  CAS  Google Scholar 

  10. Boldrin L, Zammit PS, Muntoni F, Morgan JE (2009) Mature adult dystrophic mouse muscle environment does not impede efficient engrafted satellite cell regeneration and self-renewal. Stem Cells 27(10):2478–2487. doi:10.1002/stem.162

    Article  PubMed  CAS  Google Scholar 

  11. Kelly R, Alonso S, Tajbakhsh S, Cossu G, Buckingham M (1995) Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol 129(2):383–396

    Article  PubMed  CAS  Google Scholar 

  12. Tajbakhsh S, Bober E, Babinet C, Pournin S, Arnold H, Buckingham M (1996) Gene targeting the myf-5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle. Dev Dyn 206(3):291–300

    Article  PubMed  CAS  Google Scholar 

  13. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151(6):1221–1234

    Article  PubMed  CAS  Google Scholar 

  14. Blaveri K, Heslop L, Yu DS, Rosenblatt JD, Gross JG, Partridge TA, Morgan JE (1999) Patterns of repair of dystrophic mouse muscle: studies on isolated fibers. Dev Dyn 216(3):244–256

    Article  PubMed  CAS  Google Scholar 

  15. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301

    Article  PubMed  CAS  Google Scholar 

  16. Collins CA, Zammit PS (2009) Isolation and grafting of single muscle fibres. Methods Mol Biol 482:319–330. doi:10.1007/978-1-59745-060-7_20

    Article  PubMed  CAS  Google Scholar 

  17. Gross JG, Bou-Gharios G, Morgan JE (1999) Potentiation of myoblast transplantation by host muscle irradiation is dependent on the rate of radiation delivery. Cell Tissue Res 298(2):371–375

    Article  PubMed  CAS  Google Scholar 

  18. Neal A, Boldrin L, Morgan JE (2012) The satellite cell in male and female, developing and adult mouse muscle: distinct stem cells for growth and regeneration. PLoS One 7(5):e37950. doi:10.1371/journal.pone.0037950

    Article  PubMed  CAS  Google Scholar 

  19. Hoffman EP, Morgan JE, Watkins SC, Partridge TA (1990) Somatic reversion/suppression of the mouse mdx phenotype in vivo. J Neurol Sci 99(1):9–25

    Article  PubMed  CAS  Google Scholar 

  20. Gross JG, Morgan JE (1999) Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury. Muscle Nerve 22(2):174–185

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Miss Rowan Asfahani for the pictures presented in Fig. 1. This work was supported by Muscular Dystrophy Campaign (grant code RA3/776) and Wellcome Trust University Award (grant code 08241/Z/07/Z).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boldrin, L., Morgan, J.E. (2013). Modulation of the Host Skeletal Muscle Niche for Donor Satellite Cell Grafting. In: Turksen, K. (eds) Stem Cell Niche. Methods in Molecular Biology, vol 1035. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-508-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-508-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-507-1

  • Online ISBN: 978-1-62703-508-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics