Skip to main content

Bilateral Vagotomy as a Tool for Determining Autonomic Involvement in Airway Responses in Mouse Models of Asthma

  • Protocol
  • First Online:
Mouse Models of Allergic Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1032))

Abstract

This chapter describes the use of bilateral vagotomy as a tool for determining autonomic regulation of airway responses to the exogenous bronchoconstrictor thromboxane mimetic U46619 in an acute model of asthma in the mouse. Mice receive a sensitization of ovalbumin (OVA) and adjuvant followed by 3 days of OVA aerosol to induce allergic airway disease characterized by bronchoalveolar lavage (BAL) eosinophilia, increased mucus production, and elevated IgE and IL-13. Using a small animal ventilator (Flexi-vent) and the forced oscillatory technique fit to the constant phase model of the lung, a variety of features associated with human asthma can be evaluated in mouse models. For example, this protocol describes the methods to evaluate central and peripheral airway mechanics, airway resistance (R aw) and tissue damping (G), and tissue elastance (H) in response to U46619. The contribution of autonomic nerves in this response is determined by severing both the left and right vagus nerves prior to aerosol challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masoli M, Fabian D, Holt S, Beasley R (2004) The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59:469–478

    Article  PubMed  Google Scholar 

  2. Busse WW, Lemanske RF Jr (2001) Asthma. N Engl J Med 344:350–362

    Article  PubMed  CAS  Google Scholar 

  3. Myers AC, Undem BJ (1993) Electrophysio-logical effects of tachykinins and capsaicin on guinea-pig bronchial parasympathetic ganglion neurones. J Physiol 470:665–679

    PubMed  CAS  Google Scholar 

  4. Watson N, Maclagan J, Barnes PJ (1993) Endogenous tachykinins facilitate transmission through parasympathetic ganglia in guinea-pig trachea. Br J Pharmacol 109:751–759

    Article  PubMed  CAS  Google Scholar 

  5. Dakhama A, Kanehiro A, Makela MJ, Loader JE, Larsen GL, Gelfand EW (2002) Regulation of airway hyperresponsiveness by calcitonin gene-related peptide in allergen sensitized and challenged mice. Am J Respir Crit Care Med 165:1137–1144

    Article  PubMed  Google Scholar 

  6. Veres TZ, Rochlitzer S, Shevchenko M, Fuchs B, Prenzler F, Nassenstein C, Fischer A, Welker L, Holz O, Muller M et al (2007) Spatial interactions between dendritic cells and sensory nerves in allergic airway inflammation. Am J Respir Cell Mol Biol 37:553–561

    Article  PubMed  CAS  Google Scholar 

  7. Barnes PJ (1992) Modulation of neurotransmission in airways. Physiol Rev 72:699–729

    PubMed  CAS  Google Scholar 

  8. Groneberg DA, Quarcoo D, Frossard N, Fischer A (2004) Neurogenic mechanisms in bronchial inflammatory diseases. Allergy 59:1139–1152

    Article  PubMed  CAS  Google Scholar 

  9. Agostoni E, Chinnock JE, De Daly MB, Murray JG (1957) Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135:182–205

    PubMed  CAS  Google Scholar 

  10. Canning BJ, Fischer A (2001) Neural regulation of airway smooth muscle tone. Respir Physiol 125:113–127

    Article  PubMed  CAS  Google Scholar 

  11. Mazzone SB, Canning BJ (2002) Evidence for differential reflex regulation of cholinergic and noncholinergic parasympathetic nerves innervating the airways. Am J Respir Crit Care Med 165:1076–1083

    Article  PubMed  Google Scholar 

  12. Barnes PJ (1986) Neural control of human airways in health and disease. Am Rev Respir Dis 134:1289–1314

    PubMed  CAS  Google Scholar 

  13. Allen IC, Hartney JM, Coffman TM, Penn RB, Wess J, Koller BH (2006) Thromboxane A2 induces airway constriction through an M3 muscarinic acetylcholine receptor-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 290:L526–L533

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cyphert, J.M. (2013). Bilateral Vagotomy as a Tool for Determining Autonomic Involvement in Airway Responses in Mouse Models of Asthma. In: Allen, I. (eds) Mouse Models of Allergic Disease. Methods in Molecular Biology, vol 1032. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-496-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-496-8_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-495-1

  • Online ISBN: 978-1-62703-496-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics