Skip to main content

Generation of Monoclonal Antibodies to Native Active Human Glycosyltransferases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1022))

Abstract

Complex carbohydrates serve a wide range of biological functions in cells and tissues. Their biosynthesis involves more than 200 distinct glycosyltransferases in human cells, and the expression, properties, and topology of these enzymes regulate the glycosylation patterns of proteins and lipids. Glycosyltransferases are ER-Golgi resident enzymes with slow turnover, which makes monitoring of protein expression a method more directly linked to enzyme function, than monitoring gene expression. In situ monitoring of expression and subcellular topology of glycosyltransferase proteins by immunological techniques using monoclonal antibodies therefore provides an excellent strategy to analyze the glycosylation process in cells. A major drawback has been difficulties in generating antibodies to glycosyltransferases and validating their specificities. Here we describe a simple strategy for generating and characterizing monoclonal antibodies to human glycosyltransferases. This strategy includes a process for recombinant production and purification of enzymes for immunization, a simple selection strategy for isolation of antibodies with optimal properties for in situ detection of enzyme expression, and a comprehensive strategy for characterizing the fine specificity of such antibodies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Varki A (2009) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  2. Paulson JC, Colley KJ (1989) Glycosyl­transferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264:17615–17618

    PubMed  CAS  Google Scholar 

  3. Shifley ET, Cole SE (2008) Lunatic fringe protein processing by proprotein convertases may contribute to the short protein half-life in the segmentation clock. Biochim Biophys Acta 1783:2384–2390

    Article  PubMed  CAS  Google Scholar 

  4. Woodard-Grice AV, McBrayer AC, Wakefield JK, Zhuo Y, Bellis SL (2008) Proteolytic shedding of ST6Gal-I by BACE1 regulates the glycosylation and function of ɑ4β1 integrins. J Biol Chem 283:26364–26373

    Article  PubMed  CAS  Google Scholar 

  5. Childs RA, Berger EG, Thorpe SJ, Aegerter E, Feizi T (1986) Blood-group-related carbohydrate antigens are expressed on human milk galactosyltransferase and are immunogenic in rabbits. Biochem J 238:605–611

    PubMed  CAS  Google Scholar 

  6. Feizi T, Childs RA (1987) Carbohydrates as antigenic determinants of glycoproteins. Biochem J 245:1–11

    PubMed  CAS  Google Scholar 

  7. Feizi T, Thorpe SJ, Childs RA (1987) Blood group genetic markers on human milk galactosyltransferase: relevance to the immunohistochemical approach to enzyme localization. Biochem Soc Trans 15:614–617

    PubMed  CAS  Google Scholar 

  8. Landers KA, Burger MJ, Tebay MA, Purdie DM, Scells B, Samaratunga H, Lavin MF, Gardiner RA (2005) Use of multiple biomarkers for a molecular diagnosis of prostate cancer. Int J Cancer 114:950–956

    Article  PubMed  CAS  Google Scholar 

  9. Gu C, Oyama T, Osaki T, Li J, Takenoyama M, Izumi H, Sugio K, Kohno K, Yasumoto K (2004) Low expression of polypeptide GalNAc N-acetylgalactosaminyl transferase-3 in lung adenocarcinoma: impact on poor prognosis and early recurrence. Br J Cancer 90:436–442

    Article  PubMed  CAS  Google Scholar 

  10. Stern CA, Tiemeyer M (2001) A ganglioside-­specific sialyltransferase localizes to axons and non-Golgi structures in neurons. J Neurosci 21:1434–1443

    PubMed  CAS  Google Scholar 

  11. Taatjes DJ, Roth J, Weinstein J, Paulson JC (1988) Post-Golgi apparatus localization and regional expression of rat intestinal sialyltransferase detected by immunoelectron microscopy with polypeptide epitope-purified antibody. J Biol Chem 263:6302–6309

    PubMed  CAS  Google Scholar 

  12. Hoffmeister KM, Josefsson EC, Isaac NA, Clausen H, Hartwig JH, Stossel TP (2003) Glycosylation restores survival of chilled blood platelets. Science 301:1531–1534

    Article  PubMed  CAS  Google Scholar 

  13. Wandall HH, Rumjantseva V, Sørensen AL, Patel-Hett S, Josefsson EC, Bennett EP, Italiano JE Jr, Clausen H, Hartwig JH, Hoffmeister KM (2012) The origin and function of platelet glycosyltransferases. Blood 120:626–635

    Article  PubMed  CAS  Google Scholar 

  14. Rottger S, White J, Wandall HH, Olivo JC, Stark A, Bennett EP, Whitehouse C, Berger EG, Clausen H, Nilsson T (1998) Localization of three human polypeptide GalNAc-­transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci 111(Pt 1):45–60

    PubMed  CAS  Google Scholar 

  15. Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21:149–158

    Article  PubMed  CAS  Google Scholar 

  16. Berger EG (2002) Ectopic localizations of Golgi glycosyltransferases. Glycobiology 12:29R–36R

    Article  PubMed  CAS  Google Scholar 

  17. Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA (2012) Control of mucin-type O-glycosylation—a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22:736–756

    Article  PubMed  CAS  Google Scholar 

  18. Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H (1997) Substrate specificities of three members of the human UDP-N-acetyl-α-D-­galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 272:23503–23514

    Article  PubMed  CAS  Google Scholar 

  19. Mandel U, Hassan H, Therkildsen MH, Rygaard J, Jakobsen MH, Juhl BR, Dabelsteen E, Clausen H (1999) Expression of polypeptide GalNAc-transferases in stratified epithelia and squamous cell carcinomas: immunohistological evaluation using monoclonal antibodies to three members of the GalNAc-transferase family. Glycobiology 9:43–52

    Article  PubMed  CAS  Google Scholar 

  20. Sutherlin ME, Nishimori I, Caffrey T, Bennett EP, Hassan H, Mandel U, Mack D, Iwamura T, Clausen H, Hollingsworth MA (1997) Expression of three UDP-N-acetyl-α-D-­galactosamine:polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines. Cancer Res 57:4744–4748

    PubMed  CAS  Google Scholar 

  21. Bennett EP, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell J, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG, Eiberg H, Steffensen R, Clausen H (1998) Cloning of a human UDP-N-acetyl-α-D-­Galactosamine:polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 273:30472–30481

    Article  PubMed  CAS  Google Scholar 

  22. Bennett EP, Hassan H, Mandel U, Hollingsworth MA, Akisawa N, Ikematsu Y, Merkx G, van Kessel AG, Olofsson S, Clausen H (1999) Cloning and characterization of a close homologue of human UDP-N-acetyl-α-D-­galactosamine:Polypeptide N-acetylgalacto­saminyltransferase-T3, ­designated GalNAc-T6. Evidence for genetic but not functional redundancy. J Biol Chem 274:25362–25370

    Article  PubMed  CAS  Google Scholar 

  23. Schwientek T, Bennett EP, Flores C, Thacker J, Hollmann M, Reis CA, Behrens J, Mandel U, Keck B, Schäfer MA, Haselmann K, Zubarev R, Roepstorff P, Burchell JM, Taylor-­Papadimitriou J, Hollingsworth MA, Clausen H (2002) Functional Conservation of Subfamilies of Putative UDP-N-­acetylgalactosamine:Polypeptide N-Acetylgalactosaminyltransferases in Drosophila, Caenorhabditis elegans, and Mammals. J Biol Chem 277:22623–22638

    Article  PubMed  CAS  Google Scholar 

  24. Almeida R, Levery SB, Mandel U, Kresse H, Schwientek T, Bennett EP, Clausen H (1999) Cloning and expression of a proteoglycan UDP-galactose:β-xylose β1,4-­galactosyltransferase I. A seventh member of the human β4-galactosyltransferase gene family. J Biol Chem 274:26165–26171

    Article  PubMed  CAS  Google Scholar 

  25. Vallejo-Ruiz V, Haque R, Mir A-M, Schwientek T, Mandel U, Cacan R, Delannoy P, Harduin-­Lepers A (2001) Delineation of the minimal catalytic domain of human Galβ1-3GalNAc α2,3-sialyltransferase (hST3Gal I). Biochim Biophys Acta 1549:161–173

    Article  PubMed  CAS  Google Scholar 

  26. Marcos NT, Bennett EP, Gomes J, Magalhaes A, Gomes C, David L, Dar I, Jeanneau C, DeFrees S, Krustrup D, Vogel LK, Kure EH, Burchell J, Taylor-Papadimitriou J, Clausen H, Mandel U, Reis CA (2011) ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues. Front Biosci (Elite Ed) 3:1443–1455

    Google Scholar 

  27. Harlow E, Lane D (1988) Antibodies, a laboratory manual. Cold Spring Harbour Laboratory, New York, NY

    Google Scholar 

Download references

Acknowledgments

This work was supported by Kirsten og Freddy Johansen Fonden, A.P. Møller og Hustru Chastine Mc-Kinney Møllers Fond til Almene Formaal, The Carlsberg Foundation, The Novo Nordisk Foundation, The Danish Research Councils, a program of excellence from the University of Copenhagen, and the Danish National Research Foundation (DNRF107).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vester-Christensen, M.B., Bennett, E.P., Clausen, H., Mandel, U. (2013). Generation of Monoclonal Antibodies to Native Active Human Glycosyltransferases. In: Brockhausen, I. (eds) Glycosyltransferases. Methods in Molecular Biology, vol 1022. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-465-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-465-4_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-464-7

  • Online ISBN: 978-1-62703-465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics