Skip to main content

Advances and Techniques to Measure cGMP in Intact Cardiomyocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1020))

Abstract

Förster resonance energy transfer (FRET)-based biosensors are powerful tools for real-time monitoring of signaling events in intact cells using fluorescence microscopy. Here, we describe a highly sensitive method which allows FRET-based measurements of the second messenger cGMP in adult mouse ventricular myocytes. Such measurements have been challenging before, primarily due to relatively low cGMP concentrations in cardiomyocytes and limited sensitivity of the available biosensors. With our new technique, one can reliably measure dynamic changes in cGMP upon stimulation of myocytes with natriuretic peptides and other physiological and pharmacological ligands.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Castro LR, Schittl J, Fischmeister R (2010) Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes. Circ Res 107:1232–1240

    Article  PubMed  CAS  Google Scholar 

  2. Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828

    Article  PubMed  CAS  Google Scholar 

  3. Castro LR, Verde I, Cooper DM, Fischmeister R (2006) Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113:2221–2228

    Article  PubMed  CAS  Google Scholar 

  4. Nikolaev VO, Lohse MJ (2009) Novel techniques for real-time monitoring of cGMP in living cells. Handb Exp Pharmacol 191:229–243

    Article  PubMed  CAS  Google Scholar 

  5. Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WR (2001) Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci USA 98:2437–2442

    Article  PubMed  CAS  Google Scholar 

  6. Russwurm M, Mullershausen F, Friebe A, Jager R, Russwurm C, Koesling D (2007) Design of fluorescence resonance energy transfer (FRET)-based cGMP indicators: a systematic approach. Biochem J 407:69–77

    Article  PubMed  CAS  Google Scholar 

  7. Sato M, Hida N, Ozawa T, Umezawa Y (2000) Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Ialpha and green fluorescent proteins. Anal Chem 72:5918–5924

    Article  PubMed  CAS  Google Scholar 

  8. Nausch LW, Ledoux J, Bonev AD, Nelson MT, Dostmann WR (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci USA 105:365–370

    Article  PubMed  CAS  Google Scholar 

  9. Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3:23–25

    Article  PubMed  CAS  Google Scholar 

  10. Stangherlin A, Gesellchen F, Zoccarato A, Terrin A, Fields LA, Berrera M, Surdo NC, Craig MA, Smith G, Hamilton G et al (2011) cGMP signals modulate cAMP levels in a compartment-specific manner to regulate ­catecholamine-dependent signaling in cardiac myocytes. Circ Res 108:929–939

    Article  PubMed  CAS  Google Scholar 

  11. Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD et al (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98:226–234

    Article  PubMed  CAS  Google Scholar 

  12. Niino Y, Hotta K, Oka K (2009) Simultaneous live cell imaging using dual FRET sensors with a single excitation light. PLoS One 4:e6036

    Article  PubMed  Google Scholar 

  13. Börner S, Schwede F, Schlipp A, Berisha F, Calebiro D, Lohse MJ, Nikolaev VO (2011) FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 6:427–438

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (grant NI 1301/1-1 and SFB 1002 to V.O.N) and University of Göttingen Medical Center (“pro futura” grant to V.O.N.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Götz, K.R., Nikolaev, V.O. (2013). Advances and Techniques to Measure cGMP in Intact Cardiomyocytes. In: Krieg, T., Lukowski, R. (eds) Guanylate Cyclase and Cyclic GMP. Methods in Molecular Biology, vol 1020. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-459-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-459-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-458-6

  • Online ISBN: 978-1-62703-459-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics