Skip to main content

Detection of Reactive Oxygen Species Downstream of Cyclic Nucleotide Signals in Plants

  • Protocol
  • First Online:
Cyclic Nucleotide Signaling in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1016))

Abstract

Cyclic nucleotides act in plant cell signal transduction cascades by activating cyclic nucleotide gated cation-conducting ion channels (CNGCs). Activation of CNGCs results in inward cation (including Ca2+) conductance across the plasma membrane. Elevation of cytosolic Ca2+ is an early step in numerous plant cell signal transduction cascades, including plant immune responses to pathogens. CNGC involvement, along with cyclic nucleotides cAMP and cGMP, in pathogen defense programs is one relatively well-studied area of cyclic nucleotide signaling in plants. During plant immune responses, CNGC-dependent Ca2+ elevations lead to a signaling cascade that results in the generation of defense molecules such as hydrogen peroxide and nitric oxide, and induction of defense gene expression. This pathogen defense response is discussed, and methods to detect some of the downstream signaling steps in the pathway are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ward JM, Mäser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82

    Article  PubMed  CAS  Google Scholar 

  2. Ma W, Yoshioka K, Gehring CA, Berkowitz GA (2010) The function of cyclic nucleotide gated channels in biotic stress. In: Demidchik V, Maathuis FJM (eds) Ion channels and plant stress responses. Springer, Berlin, pp 159–174

    Chapter  Google Scholar 

  3. Talke IN, Blaudez D, Maathuis FJ, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293

    Article  PubMed  CAS  Google Scholar 

  4. Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis cyclic nucleotide gated channel2 and innate immunity. Plant Cell 19:1081–1095

    Article  PubMed  CAS  Google Scholar 

  5. Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Lett 581:2237–2246

    Article  PubMed  CAS  Google Scholar 

  6. Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807

    PubMed  CAS  Google Scholar 

  7. Ma W, Qi Z, Smigel A, Walker RK, Verma R, Berkowitz GA (2009) Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Proc Natl Acad Sci U S A 106:20995–21000

    Article  PubMed  CAS  Google Scholar 

  8. Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci U S A 107:21193–21198

    Article  PubMed  CAS  Google Scholar 

  9. Dangl J (1998) Innate immunity. Plants just say NO to pathogens. Nature 394:525–527

    Article  PubMed  CAS  Google Scholar 

  10. Neil S, Barros R, Bright J, Desikan R, Hancock J, Harrison J et al (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  Google Scholar 

  11. Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459

    Article  PubMed  CAS  Google Scholar 

  12. Bolwell GP (1999) Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol 2:287–294

    Article  PubMed  CAS  Google Scholar 

  13. Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231–245

    Article  PubMed  CAS  Google Scholar 

  14. Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  PubMed  CAS  Google Scholar 

  15. Torres MA, Jones JD, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  16. Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  PubMed  CAS  Google Scholar 

  17. Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA (2010) Leaf senescence signaling: Ca2+ accumulation mediated by Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Plant Physiol 154:733–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Walker, R.K., Berkowitz, G.A. (2013). Detection of Reactive Oxygen Species Downstream of Cyclic Nucleotide Signals in Plants. In: Gehring, C. (eds) Cyclic Nucleotide Signaling in Plants. Methods in Molecular Biology, vol 1016. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-441-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-441-8_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-440-1

  • Online ISBN: 978-1-62703-441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics