Skip to main content

Allelic Imbalance Assays to Quantify Allele-Specific Gene Expression and Transcription Factor Binding

  • Protocol
  • First Online:
  • 3872 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1015))

Abstract

A growing number of noncoding variants are found to influence the susceptibility to common diseases and interindividual variation in drug response. However, the mechanisms by which noncoding variation affects cellular and clinical phenotypes remain to be elucidated. Allele-specific assays allow testing directly the differential properties of the alleles at a regulatory variant, which are detected as an allelic imbalance. Two widely used allelic imbalance assays target cDNA and DNA from chromatin immunoprecipitation (ChIP) experiments, and therefore revealing allele-specific gene expression and transcription factor binding, respectively. The throughput of allelic imbalance assays ranges from single variant to the genome scale, which are made possible by the recent advances in genotyping and sequencing technologies (e.g., genome-wide quantitative cDNA genotyping, ChIP-seq).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. WTCCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678

    Article  Google Scholar 

  2. Morley M et al (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430(7001):743–747

    Article  PubMed  CAS  Google Scholar 

  3. Pickrell JK et al (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464(7289):768–772

    Article  PubMed  CAS  Google Scholar 

  4. Smirnov DA et al (2009) Genetic analysis of radiation-induced changes in human gene expression. Nature 459:587–591

    Article  PubMed  CAS  Google Scholar 

  5. Stranger BE et al (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1(6):e78

    Article  PubMed  Google Scholar 

  6. Stranger BE et al (2007) Population genomics of human gene expression. Nat Genet 39(10):1217–1224

    Article  PubMed  CAS  Google Scholar 

  7. Montgomery SB et al (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464(7289): 773–777

    Article  PubMed  CAS  Google Scholar 

  8. Yan H et al (2002) Allelic variation in human gene expression. Science 297(5584):1143

    Article  PubMed  CAS  Google Scholar 

  9. Knight JC et al (2003) In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nat Genet 33(4):469–475

    Article  PubMed  CAS  Google Scholar 

  10. Matyas G et al (2002) Quantification of single nucleotide polymorphisms: a novel method that combines primer extension assay and capillary electrophoresis. Hum Mutat 19(1):58–68

    Article  PubMed  CAS  Google Scholar 

  11. Jurinke C et al (2002) Automated genotyping using the DNA MassArray technology. Methods Mol Biol 187:179–192

    PubMed  CAS  Google Scholar 

  12. Braun A et al (1997) Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin Chem 43(7):1151–1158

    PubMed  CAS  Google Scholar 

  13. Pastinen T (2010) Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet 11(8):533–538

    Article  PubMed  CAS  Google Scholar 

  14. Luca F et al (2009) Adaptive variation regulates the expression of the human SGK1 gene in response to stress. PLoS Genet 5(5):e1000489

    Article  PubMed  Google Scholar 

  15. Maranville JC et al (2011) Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes. PLoS Genet 7(7):e1002162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sonal Kashyap, Allison Richards, and Shaneen Baxter for contributing to the optimization of these protocols and Joseph Maranville for helpful advice. F.L. was supported by an AHA postdoctoral fellowship (11POST5390005).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Luca, F., Di Rienzo, A. (2013). Allelic Imbalance Assays to Quantify Allele-Specific Gene Expression and Transcription Factor Binding. In: Innocenti, F., van Schaik, R. (eds) Pharmacogenomics. Methods in Molecular Biology, vol 1015. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-435-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-435-7_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-434-0

  • Online ISBN: 978-1-62703-435-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics