Skip to main content

Bioengineered Skin Substitutes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1001))

Abstract

Bioengineered skin has great potential for use in regenerative medicine for treatment of severe wounds such as burns or chronic ulcers. Genetically modified skin substitutes have also been used as cell-based devices or “live bioreactors” to deliver therapeutics locally or systemically. Finally, these tissue constructs are used as realistic models of human skin for toxicological testing, to speed drug development and replace traditional animal-based tests in a variety of industries. Here we describe a method of generating bioengineered skin based on a natural scaffold, namely, decellularized human dermis and epidermal stem cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Medalie DA, Eming SA, Collins ME et al (1997) Differences in dermal analogs influence subsequent pigmentation, epidermal differentiation, basement membrane, and rete ridge formation of transplanted composite skin grafts. Transplantation 64:454–465

    Article  PubMed  CAS  Google Scholar 

  2. Hilal L, Rochat A, Duquesnoy P et al (1993) A homozygous insertion-deletion in the type VII collagen gene (COL7A1) in Hallopeau-Siemens dystrophic epidermolysis bullosa. Nat Genet 5:287–293

    Article  PubMed  CAS  Google Scholar 

  3. Jarvikallio A, Pulkkinen L, Uitto J (1997) Molecular basis of dystrophic epidermolysis bullosa: mutations in the type VII collagen gene (COL7A1). Hum Mutat 10:338–347

    Article  PubMed  CAS  Google Scholar 

  4. Chamcheu JC, Siddiqui IA, Syed DN et al (2011) Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys 508:123–137

    Article  PubMed  CAS  Google Scholar 

  5. Khavari PA, Rollman O, Vahlquist A (2002) Cutaneous gene transfer for skin and systemic diseases. J Intern Med 252:1–10

    Article  PubMed  CAS  Google Scholar 

  6. Woodman SE, Lazar AJ, Aldape KD et al (2012) New strategies in melanoma: molecular testing in advanced disease. Clin Cancer Res 18(5):1195–1200

    Article  PubMed  Google Scholar 

  7. Meana A, Iglesias J, Del Rio M et al (1998) Large surface of cultured human epithelium obtained on a dermal matrix based on live fibroblast-containing fibrin gels. Burns 24:621–630

    Article  PubMed  CAS  Google Scholar 

  8. Mansbridge J (2002) Tissue-engineered skin substitutes. Expert Opin Biol Ther 2:25–34

    Article  PubMed  Google Scholar 

  9. Liu K, Yang Y, Mansbridge J (2000) Comparison of the stress response to cryopreservation in monolayer and three-dimensional human fibroblast cultures: stress proteins, MAP kinases, and growth factor gene expression. Tissue Eng 6:539–554

    Article  PubMed  CAS  Google Scholar 

  10. Pinney E, Liu K, Sheeman B et al (2000) Human three-dimensional fibroblast cultures express angiogenic activity. J Cell Physiol 183:74–82

    Article  PubMed  CAS  Google Scholar 

  11. Healy CM, Boorman JG (1989) Comparison of E-Z Derm and Jelonet dressings for partial skin thickness burns. Burns Incl Therm Inj 15:52–54

    Article  PubMed  CAS  Google Scholar 

  12. Vanstraelen P (1992) Comparison of calcium sodium alginate (KALTOSTAT) and porcine xenograft (E-Z DERM) in the healing of split-thickness skin graft donor sites. Burns 18:145–148

    Article  PubMed  CAS  Google Scholar 

  13. Falanga V, Sabolinski M (1999) A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen 7:201–207

    Article  PubMed  CAS  Google Scholar 

  14. Windsor ML, Eisenberg M, Gordon-Thomson C et al (2009) A novel model of wound healing in the SCID mouse using a cultured human skin substitute. Australas J Dermatol 50:29–35

    Article  PubMed  Google Scholar 

  15. Burke JF, Yannas IV, Quinby WC Jr et al (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194:413–428

    Article  PubMed  CAS  Google Scholar 

  16. Yannas IV, Burke JF (1980) Design of an artificial skin. I. Basic design principles. J Biomed Mater Res 14:65–81

    Article  PubMed  CAS  Google Scholar 

  17. Yannas IV, Burke JF, Gordon PL et al (1980) Design of an artificial skin. II. Control of chemical composition. J Biomed Mater Res 14:107–132

    Article  PubMed  CAS  Google Scholar 

  18. Mostow EN, Haraway GD, Dalsing M et al (2005) Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg 41:837–843

    Article  PubMed  Google Scholar 

  19. Livesey SA, Herndon DN, Hollyoak MA et al (1995) Transplanted acellular allograft dermal matrix. Potential as a template for the reconstruction of viable dermis. Transplantation 60:1–9

    Article  PubMed  CAS  Google Scholar 

  20. Cuono C, Langdon R, McGuire J (1986) Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1:1123–1124

    Article  PubMed  CAS  Google Scholar 

  21. Ramos-e-Silva M, Ribeiro de Castro MC (2002) New dressings, including tissue-­engineered living skin. Clin Dermatol 20:715–723

    Article  PubMed  Google Scholar 

  22. Andreadis ST (2004) Gene transfer to epidermal stem cells: implications for tissue engineering. Expert Opin Biol Ther 4:783–800

    Article  PubMed  CAS  Google Scholar 

  23. Andreadis ST, Hamoen KE, Yarmush ML et al (2001) Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB J 15:898–906

    Article  PubMed  CAS  Google Scholar 

  24. Fentem JH, Botham PA (2002) ECVAM’s activities in validating alternative tests for skin corrosion and irritation. Altern Lab Anim 30(Suppl 2):61–67

    PubMed  CAS  Google Scholar 

  25. Tornier C, Rosdy M, Maibach HI (2006) In vitro skin irritation testing on reconstituted human epidermis: reproducibility for 50 chemicals tested with two protocols. Toxicol In Vitro 20:401–416

    Article  PubMed  CAS  Google Scholar 

  26. Hagino S, Okazaki Y, Itagaki H (2008) An in vitro tier evaluation for the identification of cosmetic ingredients which are not ocular irritants. Altern Lab Anim 36:641–652

    PubMed  CAS  Google Scholar 

  27. Roguet R, Cohen C, Dossou KG et al (1994) Episkin, a reconstituted human epidermis for assessing in vitro the irritancy of topically applied compounds. Toxicol In Vitro 8:283–291

    Article  PubMed  CAS  Google Scholar 

  28. Cotovio J, Onno L, Justine P et al (2001) Generation of oxidative stress in human cutaneous models following in vitro ozone exposure. Toxicol In Vitro 15:357–362

    Article  PubMed  CAS  Google Scholar 

  29. Kim KH, Chung CB, Kim YH et al (2005) Cosmeceutical properties of levan produced by Zymomonas mobilis. J Cosmet Sci 56:395–406

    PubMed  CAS  Google Scholar 

  30. Lelievre D, Justine P, Christiaens F et al (2007) The EpiSkin phototoxicity assay (EPA): development of an in vitro tiered strategy using 17 reference chemicals to predict phototoxic potency. Toxicol In Vitro 21:977–995

    Article  PubMed  CAS  Google Scholar 

  31. Chen M, Kasahara N, Keene DR et al (2002) Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet 32:670–675

    Article  PubMed  CAS  Google Scholar 

  32. Choate KA, Medalie DA, Morgan JR et al (1996) Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nat Med 2:1263–1267

    Article  PubMed  CAS  Google Scholar 

  33. Freiberg RA, Choate KA, Deng H et al (1997) A model of corrective gene transfer in X-linked ichthyosis. Hum Mol Genet 6:927–933

    Article  PubMed  CAS  Google Scholar 

  34. Fakharzadeh SS, Zhang Y, Sarkar R et al (2000) Correction of the coagulation defect in hemophilia A mice through factor VIII expression in skin. Blood 95:2799–2805

    PubMed  CAS  Google Scholar 

  35. Gerrard AJ, Hudson DL, Brownlee GG et al (1993) Towards gene therapy for haemophilia B using primary human keratinocytes. Nat Genet 3:180–183

    Article  PubMed  CAS  Google Scholar 

  36. Larcher F, Del Rio M, Serrano F et al (2001) A cutaneous gene therapy approach to human leptin deficiencies: correction of the murine ob/ob phenotype using leptin-targeted keratinocyte grafts. FASEB J 15:1529–1538

    Article  PubMed  CAS  Google Scholar 

  37. Lei P, Ogunade A, Kirkwood KL et al (2007) Efficient production of bioactive insulin from human epidermal keratinocytes and tissue-engineered skin substitutes: implications for treatment of diabetes. Tissue Eng 13:2119–2131

    Article  PubMed  CAS  Google Scholar 

  38. Tian J, Lei P, Laychock SG et al (2008) Regulated insulin delivery from human epidermal cells reverses hyperglycemia. Mol Ther 16:1146–1153

    Article  PubMed  CAS  Google Scholar 

  39. Therrien JP, Kim SM, Terunuma A et al (2010) A gene therapy approach for long-term normalization of blood pressure in hypertensive mice by ANP-secreting human skin grafts. Proc Natl Acad Sci U S A 107:1178–1183

    Article  PubMed  CAS  Google Scholar 

  40. Andreadis ST (2006) Experimental models and high-throughput diagnostics for tissue regeneration. Expert Opin Biol Ther 6:1071–1086

    Article  PubMed  CAS  Google Scholar 

  41. Andreadis ST (2007) Gene-modified tissue-engineered skin: the next generation of skin substitutes. Adv Biochem Eng Biotechnol 103:241–274

    PubMed  CAS  Google Scholar 

  42. Geer DJ, Swartz DD, Andreadis ST (2004) In vivo model of wound healing based on transplanted tissue-engineered skin. Tissue Eng 10:1006–1017

    PubMed  CAS  Google Scholar 

  43. Geer DJ, Swartz DD, Andreadis ST (2005) Biomimetic delivery of keratinocyte growth factor upon cellular demand for accelerated wound healing in vitro and in vivo. Am J Pathol 167:1575–1586

    Article  PubMed  CAS  Google Scholar 

  44. Medalie DA, Eming SA, Tompkins RG et al (1996) Evaluation of human skin reconstituted from composite grafts of cultured keratinocytes and human acellular dermis transplanted to athymic mice. J Invest Dermatol 107:121–127

    Article  PubMed  CAS  Google Scholar 

  45. Lugo LM, Lei P, Andreadis ST (2011) Vascularization of the dermal support enhances wound re-epithelialization by in situ delivery of epidermal keratinocytes. Tissue Eng Part A 17:665–675

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lei, P., You, H., Andreadis, S.T. (2013). Bioengineered Skin Substitutes. In: Basu, J., Ludlow, J. (eds) Organ Regeneration. Methods in Molecular Biology, vol 1001. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-363-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-363-3_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-362-6

  • Online ISBN: 978-1-62703-363-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics