Skip to main content

Self-Assembling Nanomaterials: Monitoring the Formation of Amyloid Fibrils, with a Focus on Small-Angle X-Ray Scattering

  • Protocol
  • First Online:
Book cover Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 996))

Abstract

Amyloid fibrils are attractive targets for applications in biotechnology. These thin, nanoscale protein fibers are highly ordered structures that self-assemble from their component proteins or peptides. This chapter describes the use of several biophysical techniques to monitor the formation of amyloid fibrils including a common dye-binding assay, turbidity assay, and small-angle X-ray scattering. These techniques provide information about the assembly mechanism, the rate and reproducibility of assembly, as well as the size of species along the assembly pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guijarro J, Sunde M, Jones J, Campbell I, Dobson CM (1998) Amyloid fibril formation by an sh3 domain. Proc Natl Acad Sci U S A 95:4224–4228

    Article  PubMed  CAS  Google Scholar 

  2. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  PubMed  CAS  Google Scholar 

  3. Fandrich M, Fletcher M, Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410:165–166

    Article  PubMed  CAS  Google Scholar 

  4. Gras SL (2007) Amyloid fibrils: from disease to design. New biomaterial applications for self-assembling cross-β fibrils. Aust J Chem 60:333–342

    Article  CAS  Google Scholar 

  5. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J, Lannfelt L (2001) The ‘arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced A-beta protofibril formation. Nat Neurosci 4:887–893

    Article  PubMed  CAS  Google Scholar 

  6. Jones L (2002) The cell biology of huntington’s disease. Oxford University Press, Oxford OX2 6DP, UK, pp 348–362

    Google Scholar 

  7. Olsen A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655

    Article  PubMed  CAS  Google Scholar 

  8. Saupe SJ (2000) Molecular genetics of heterokaryon incompatibility in filamentous Ascomycetes. Microbiol Mol Biol Rev 64:489–502

    Article  PubMed  CAS  Google Scholar 

  9. Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B, Forge V, Bathany K, Lascu I, Scmitter J, Riek R, Saupe SJ (2003) Domain organization and structure-function relationship of the het-s prion protein of Podospora anserina. EMBO J 22:2071–2081

    Article  PubMed  CAS  Google Scholar 

  10. Barlow D, Dickinson G, Orihuela B, Kulp J III, Rittschof D, Wahl K (2010) Characterization of the adhesive plaque of the barnacle balanus amphitrite: amyloid-like nanofibrils are a major component. Langmuir 26:6549–6556

    Article  PubMed  CAS  Google Scholar 

  11. Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS (2003) Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol 161:461–462

    Article  Google Scholar 

  12. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:e6

    Article  PubMed  Google Scholar 

  13. Caflisch A (2006) Computational models for the prediction of polypeptide aggregation propensity. Curr Opin Chem Biol 10:437–444

    Article  PubMed  CAS  Google Scholar 

  14. Conchillo-Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X, Ventura S (2007) Aggrescan: a server for the prediction and evaluation of ‘hot spots’ of aggregation in polypeptides. BMC Bioinformatics 8:65–81

    Article  PubMed  Google Scholar 

  15. Nadaud PS, Sarkar M, Wu B, MacPhee CE, Magliery TJ, Jaroniec CP (2010) Expression and purification of a recombinant amyloidogenic peptide from transthyretin for solid-state NMR spectroscopy. Protein Exp Purif 70:101–108

    Article  CAS  Google Scholar 

  16. Tickler AK, Clippingdale AB, Wade JD (2004) Amyloid-beta as a ‘difficult sequence’ in solid phase peptide synthesis. Protein Pept Lett 11:377–384

    Article  PubMed  CAS  Google Scholar 

  17. Gustavsson A, Engstrom U, Westermark P (1991) Normal transthyretin and synthetic transthyretin fragments form amyloid-like fibrils in vitro. Biochem Biophys Res Commun 175:1159–1164

    Article  PubMed  CAS  Google Scholar 

  18. Gras SL, Tickler AK, Squires AM, Devlin GL, Horton MA, Dobson CM, MacPhee CE (2008) Functionalised amyloid fibrils for roles in cell adhesion. Biomaterials 3:22–30

    Google Scholar 

  19. de La Paz ML, Goldie K, Zurdo J, Lacroix E, Dobson CM, Hoenger A, Serrano L (2002) De novo designed peptide-based amyloid fibrils. Proc Natl Acad Sci U S A 99:16052–16057

    Article  Google Scholar 

  20. Garvey M, Gras S, Meehan S, Meade S, Carver J, Gerrard J (2009) Protein nanofibres of defined morphology prepared from mixtures of crude crystallins. Int J Nanotechnol 6:258–273

    Article  CAS  Google Scholar 

  21. Wetzel R (2006) Kinetics and thermodynamics of amyloid fibril assembly. Acc Chem Res 39:671–679

    Article  PubMed  CAS  Google Scholar 

  22. Nilsson M (2004) Techniques to study amyloid fibril formation in vitro. Methods 34:151–160

    Article  PubMed  CAS  Google Scholar 

  23. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric-determination of amyloid fibrils in vitro using the fluorescent dye. Thioflavine-T. Anal Biochem 177:244–249

    Article  PubMed  CAS  Google Scholar 

  24. LeVine H (1993) Thioflavine-T interaction with synthetic Alzheimer’s disease beta-amyloid peptides - detection of amyloid aggregation in solution. Protein Sci 2:404–410

    Article  PubMed  CAS  Google Scholar 

  25. Krebs MRH, Bromley EHC, Donald AM (2005) The binding of Thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149:30–37

    Article  PubMed  CAS  Google Scholar 

  26. Groenning M, Norrman M, Flink JM, van de Weert M, Bukrinsky JT, Schluckebier G, Frokjaer S (2007) Binding mode of Thioflavin-T in insulin amyloid fibrils. J Struct Biol 159:483–497

    Article  PubMed  CAS  Google Scholar 

  27. Kitts CC, Bout DAV (2009) Near-field scanning optical microscopy measurements of fluorescent molecular probes binding to insulin amyloid fibrils. J Phys Chem B 113:12090–12095

    Article  PubMed  CAS  Google Scholar 

  28. Wolfe LS, Calabrese MF, Nath A, Blaho DV, Miranker AD, Xiong Y (2010) Protein-induced photophysical changes to the amyloid indicator dye Thioflavin-T. Proc Natl Acad Sci U S A 107:16863–16868

    Article  PubMed  CAS  Google Scholar 

  29. Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804:1405–1412

    Article  PubMed  CAS  Google Scholar 

  30. Svergun D, Koch M (2003) Small-angle scattering studies of biological macromolecules. Rep Prog Phys 66:1735–1782

    Article  CAS  Google Scholar 

  31. Putnam C, Hammel M, Hura G, Tainer J (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285

    Article  PubMed  CAS  Google Scholar 

  32. Konarev P, Petoukhov M, Volkov V, Svergun D (2006) Atsas 2.1, a program package for small-angle scattering data analysis. J Appl Crystallogr 39:277–286

    Article  CAS  Google Scholar 

  33. Chen S, Wetzel R (2001) Solubilization and disaggregation of polyglutamine peptides. Protein Sci 10:887–891

    Article  PubMed  CAS  Google Scholar 

  34. Fezoui Y, Hartley DM, Harper JD, Khurana R, Walsh DM, Condron MM, Selkoe DJ, Lansbury PTJ, Fink AL, Teplow DB (2000) An improved method of preparing the amyloid beta-protein for fibrillogenesis and neurotoxicity experiments. Amyloid 7:166–178

    Article  PubMed  CAS  Google Scholar 

  35. Lashuel HA, Hartley DM, Petre BM, Wall JS, Simon MN, Walz T, Lansbury PTJ (2003) Mixtures of wild-type and a pathogenic (E22G) form of Aβ40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 332:795–808

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Sawyer, E.B., Gras, S.L. (2013). Self-Assembling Nanomaterials: Monitoring the Formation of Amyloid Fibrils, with a Focus on Small-Angle X-Ray Scattering. In: Gerrard, J. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 996. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-354-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-354-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-353-4

  • Online ISBN: 978-1-62703-354-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics