Skip to main content

Photochromic Potassium Channel Blockers: Design and Electrophysiological Characterization

  • Protocol
  • First Online:
Chemical Neurobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 995))

Abstract

Voltage-gated potassium (K v) channels are membrane proteins that open a selective pore upon membrane depolarization, allowing K+ ions to flow down their electrochemical gradient. In neurons, K v channels play a key role in repolarizing the membrane potential during the falling phase of the action potential, often resulting in an after hyperpolarization. Opening of K v channels results in a decrease of cellular excitability, whereas closing (or pharmacological block) has the opposite effect, increased excitability. We have developed a series of photosensitive blockers for K v channels that enable reversible, optical regulation of potassium ion flow. Such molecules can be used for remote control of neuronal excitability using light as an on/off switch. Here we describe the design and electrophysiological characterization of photochromic blockers of ion channels. Our focus is on K v channels but in principle, the techniques described here can be applied to other ion channels and signaling proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kramer RH, Fortin D, Trauner D (2009) New photochemical tools for controlling neuronal activity. Curr Opin Neurobiol 19:544–552

    Article  PubMed  CAS  Google Scholar 

  2. Gorostiza P, Isacoff EY (2007) Optical switches and triggers for the manipulation of ion channels and pores. Mol Biosyst 3:686–704

    Article  PubMed  CAS  Google Scholar 

  3. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, Mackinnon R (1998) The structure of the potassium channel: molecular basis of K  +  conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  4. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates Inc, Sunderland, MA, p 814

    Google Scholar 

  5. Wang GK, Quan C, Vladimirov M, Mok WM, Thalhammer JG (1995) Quaternary ammonium derivative of lidocaine as a long-acting local anesthetic. Anesthesiology 83:1293–1301

    Article  PubMed  CAS  Google Scholar 

  6. Taglialatela M, Vandongen AM, Drewe JA, Joho RH, Brown AM, Kirsch GE (1991) Patterns of internal and external tetraethylammonium block in four homologous K  +  channels. Mol Pharmacol 40:299–307

    PubMed  CAS  Google Scholar 

  7. Banghart MR, Mourot A, Fortin DL, Yao JZ, Kramer RH, Trauner D (2009) Photochromic blockers of voltage-gated potassium channels. Angew Chem Int Ed 48:9097–9101

    Article  CAS  Google Scholar 

  8. Fortin D, Banghart M, Dunn TW, Borges K, Wagenaar DA, Gaudry Q, Karakossian MH, Otis TS, Kristan WB, Trauner D, Kramer RH (2008) Photochemical control of endogenous ion channels and cellular excitability. Nat Methods 5:331–338

    PubMed  CAS  Google Scholar 

  9. Mourot A, Fehrentz T, Lefeuvre Y, Smith C, Herold C, Dalkara D, Nagy F, Trauner D, Kramer R. Rapid optical control of nociception with an ion channel photoswitch. Nat Methods 9:396–402

    Google Scholar 

  10. Mourot A, Kienzler MA, Banghart MR, Fehrentz T, Huber FME, Stein M, Kramer RH, Trauner D (2011) Tuning photochromic ion channel blockers. ACS Chem Neurosci 2:536–543

    Article  PubMed  CAS  Google Scholar 

  11. Bartels E, Wassermann NH, Erlanger BF (1971) Photochromic activators of the acetylcholine receptor. Proc Natl Acad Sci U S A 68:1820–1823

    Article  PubMed  CAS  Google Scholar 

  12. Lester HA, Krouse ME, Nass MM, Wassermann NH, Erlanger BF (1979) Light-activated drug confirms a mechanism of ion channel blockade. Nature 280:509–510

    Article  PubMed  CAS  Google Scholar 

  13. Volgraf M, Gorostiza P, Szobota S, Helix MR, Isacoff EY, Trauner D (2007) Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J Am Chem Soc 129:260–261

    Article  PubMed  CAS  Google Scholar 

  14. Nargeot J, Lester HA, Birdsall NJ, Stockton J, Wassermann NH, Erlanger BF (1982) A photoisomerizable muscarinic antagonist. Studies of binding and of conductance relaxations in frog heart. J Gen Physiol 79:657–678

    Article  PubMed  CAS  Google Scholar 

  15. Kaufman H, Vratsanos SM, Erlanger BF (1968) Photoregulation of an enzymic process by means of a light-sensitive ligand. Science 162:1487–1489

    Article  PubMed  CAS  Google Scholar 

  16. Wainberg MA, Erlanger BF (1971) Investigation of the active center of trypsin using photochromic substrates. Biochemistry 10:3816–3819

    Article  PubMed  CAS  Google Scholar 

  17. Westmark PR, Kelly JP, Smith BD (1993) Photoregulation of enzyme activity. Photochromic, transition-state-analogue inhibitors of cysteine and serine proteases. J Am Chem Soc 115(9):3416–3419

    Article  CAS  Google Scholar 

  18. Zhang Y, Erdmann F, Fischer G (2009) Augmented photoswitching modulates immune signaling. Nat Chem Biol 5:724–726

    Article  PubMed  CAS  Google Scholar 

  19. Jiang B, Sun X, Cao K, Wang R (2002) Endogenous Kv channels in human embryonic kidney (HEK-293) cells. Mol Cell Biochem 238:69–79

    Article  PubMed  CAS  Google Scholar 

  20. Smart T, Krishek B (1995) Xenopus oocyte microinjection and Ion-channel expression. In: Boulton AA, Baker GB, Walz W (eds) Patch clamp applications and protocols, neuromethods, vol 26. Humana Press, Totowa, NJ, pp 1–47

    Chapter  Google Scholar 

  21. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from shaker, a putative potassium channel gene from drosophila. Science 237:749–753

    Article  PubMed  CAS  Google Scholar 

  22. Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538

    Article  PubMed  CAS  Google Scholar 

  23. Krouse ME, Lester HA, Wassermann NH, Erlanger BF (1985) Rates and equilibria for a photoisomerizable antagonist at the acetylcholine receptor of electrophorus electroplaques. J Gen Physiol 86:235–256

    Article  PubMed  CAS  Google Scholar 

  24. Chen CT, Wagner H, Still WC (1998) Fluorescent, sequence-selective peptide detection by synthetic small molecules. Science 279:851–853

    Article  PubMed  CAS  Google Scholar 

  25. Kingston RE, Chen CA, Okayama H. (2003). Calcium phosphate transfection. Curr Protoc Cell Biol, Chapter 20, Unit 20.3

    Google Scholar 

  26. Molleman A (2002) Patch clamping: an introductory guide to patch clamp electrophysiology, 1st edn. Wiley, New York, p 186

    Google Scholar 

  27. Kirsch GE, Taglialatela M, Brown AM (1991) Internal and external TEA block in single cloned K  +  channels. Am J Physiol 261:C583–C590

    PubMed  CAS  Google Scholar 

  28. Sadovski O, Beharry AA, Zhang F, Woolley GA (2009) Spectral tuning of azobenzene photoswitches for biological applications. Angew Chem Int Ed 48:1484–1486

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Matthew R. Banghart (Harvard Medical School), Michael Kienzler, and Dirk Trauner (University of Munich) for the design and synthesis of PCLs described in this chapter, and to Christopher Davenport for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Mourot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mourot, A., Fehrentz, T., Kramer, R.H. (2013). Photochromic Potassium Channel Blockers: Design and Electrophysiological Characterization. In: Banghart, M. (eds) Chemical Neurobiology. Methods in Molecular Biology, vol 995. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-345-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-345-9_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-344-2

  • Online ISBN: 978-1-62703-345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics