Skip to main content

Three-Dimensional Acrylamide Fluorescence In Situ Hybridization for Plant Cells

  • Protocol
  • First Online:
Plant Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 990))

Abstract

Plant meiosis involves complex and dynamic processes that occur within the space inside the nucleus. Direct inspection of meiotic chromosomes by fluorescence microscopy has been used to investigate many of these processes. In particular, optical sectioning microscopy of fluorescence in situ hybridization (FISH)-stained nuclei provides three-dimensional spatial information about the organization and distribution of specific sequences and chromosomal loci within the nucleus. Here we provide a fully detailed three-dimensional (3D) acrylamide FISH method for the analysis of plant meiotic nuclei. Several examples illustrate the versatility of this technique for the investigation of meiotic telomere dynamics in maize, Arabidopsis, and oat. Additional examples of 3D FISH include chromosome painting in a maize chromosome-addition line of oat and telomere FISH with maize nuclei from plants expressing a fluorescently tagged fusion protein, histone H2B-mCherry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belmont AS, Sedat JW, Agard DA (1987) A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J Cell Biol 105:77–92

    Article  PubMed  CAS  Google Scholar 

  2. Sedat J, Manuelidis L (1978) A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb Symp Quant Biol 42:331–350

    Article  PubMed  CAS  Google Scholar 

  3. Urata Y, Parmelee SJ, Agard DA, Sedat JW (1995) A three-dimensional structural dissection of Drosophila polytene chromosomes. J Cell Biol 131:279–295

    Article  PubMed  CAS  Google Scholar 

  4. Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-­dimensional spatial analysis of telomere ­positions before and during meiotic prophase. J Cell Biol 137:5–18

    Article  PubMed  CAS  Google Scholar 

  5. Bass HW, Riera-Lizarazu O, Ananiev EV, Bordoli SJ, Rines HW, Phillips RL et al (2000) Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J Cell Sci 113:1033–1042

    PubMed  CAS  Google Scholar 

  6. Bass HW, Bordoli SJ, Foss EM (2003) The desynaptic (dy) and desynaptic1 (dsy1) mutations in maize (Zea mays L.) cause distinct telomere-misplacement phenotypes during meiotic prophase. J Exp Bot 54:39–46

    Article  PubMed  CAS  Google Scholar 

  7. John B (1990) Meiosis. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  8. Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    Article  PubMed  CAS  Google Scholar 

  9. Franklin AE, McElver J, Sunjevaric I, Rothstein R, Bowen B, Cande WZ (1999) Three-dimensional microscopy of the rad51 recombination protein during meiotic prophase. Plant Cell 11:809–824

    PubMed  CAS  Google Scholar 

  10. Franklin AE, Golubovskaya IN, Bass HW, Cande WZ (2003) Improper chromosome synapsis is associated with elongated RAD51 structures in the maize desynaptic2 mutant. Chromosoma 112:17–25

    Article  PubMed  CAS  Google Scholar 

  11. Cowan CR, Carlton PM, Cande WZ (2002) Reorganization and polarization of the meiotic bouquet-stage cell can be uncoupled from telomere clustering. J Cell Sci 115:3757–3766

    Article  PubMed  CAS  Google Scholar 

  12. Golubovskaya IN, Harper LC, Pawlowski WP, Schichnes D, Cande WZ (2002) The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). Genetics 162:1979–1993

    PubMed  CAS  Google Scholar 

  13. Golubovskaya IN, Hamant O, Timofejeva L, Wang CJ, Braun D, Meeley R, Cande WZ (2006) Alleles of afd1 dissect REC8 functions during meiotic prophase I. J Cell Sci 119:3306–3315

    Article  PubMed  CAS  Google Scholar 

  14. Golubovskaya IN, Wang CJ, Timofejeva L, Cande WZ (2011) Maize meiotic mutants with improper or non-homologous synapsis due to problems in pairing or synaptonemal complex formation. J Exp Bot 62:1533–1544

    Article  PubMed  CAS  Google Scholar 

  15. Koumbaris GL, Bass HW (2003) A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Plant J 35:647–659

    Article  PubMed  CAS  Google Scholar 

  16. Pawlowski WP, Golubovskaya IN, Cande WZ (2003) Altered nuclear distribution of recombination protein RAD51 in maize mutants suggests the involvement of RAD51 in meiotic homology recognition. Plant Cell 15:1807–1816

    Article  PubMed  CAS  Google Scholar 

  17. Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A et al (2005) A REC8-dependent plant Shugoshin is required for maintenance of centromeric ­cohesion during meiosis and has no mitotic functions. Curr Biol 15:948–954

    Article  PubMed  CAS  Google Scholar 

  18. Li J, Harper LC, Golubovskaya I, Wang CR, Weber D, Meeley RB et al (2007) Functional analysis of maize RAD51 in meiosis and double-strand break repair. Genetics 176:1469–1482

    Article  PubMed  CAS  Google Scholar 

  19. Bass HW, Nagar S, Hanley-Bowdoin L, Robertson D (2000) Chromosome condensation induced by geminivirus infection of mature plant cells. J Cell Sci 113:1149–1160

    PubMed  CAS  Google Scholar 

  20. Kikuchi S, Tanaka H, Wako T, Tsujimoto H (2007) Centromere separation and association in the nuclei of an interspecific hybrid between Torenia fournieri and T. baillonii (Scrophulariaceae) during mitosis and meiosis. Genes Genet Syst 82:369–375

    Article  PubMed  Google Scholar 

  21. Murphy SP, Simmons CR, Bass HW (2010) Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants. BMC Plant Biol 10:269

    Article  PubMed  CAS  Google Scholar 

  22. Howe ES, Clemente TE, Bass HW (2012) Maize histone H2B-mCherry, a new fluorescent chromatin marker for somatic and meiotic chromosome research. DNA Cell Biol (in press)

    Google Scholar 

  23. Chen H, Swedlow JR, Grote MA, Sedat JW, Agard DA (1995) The collection, processing, and display of digital three-dimensional images of biological specimens. In: Pawley JB (ed) Handbook of biological confocal microscopy. Plenum, New York, pp 197–210

    Google Scholar 

  24. Hiraoka Y, Swedlow JR, Paddy MR, Agard DA, Sedat JW (1991) Three-dimensional multiple wavelength fluorescence microscopy for the structural analysis of biological phenomena. Semin Cell Biol 2:153–165

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank A.B. Thistle and D.L. Vera for critical reading of the manuscript and insightful comments and T.E. Clemente for providing the histone H2B-mCherry line of maize. This work was supported by a Women in Science Math and Engineering Fellowship to ESH, an American Heart Association predoctoral fellowship to SPM (AHA, Greater Southeast Affiliate, number 0715487B), a CRC-planning grant to HWB (2008), and a National Science Foundation grant to HWB (NSF IOS-1025954).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Howe, E.S., Murphy, S.P., Bass, H.W. (2013). Three-Dimensional Acrylamide Fluorescence In Situ Hybridization for Plant Cells. In: Pawlowski, W., Grelon, M., Armstrong, S. (eds) Plant Meiosis. Methods in Molecular Biology, vol 990. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-333-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-333-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-332-9

  • Online ISBN: 978-1-62703-333-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics