Skip to main content

The Use of VIGS Technology to Study Plant–Herbivore Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 975))

Abstract

Plants employ a large variety of defense strategies to resist herbivores, which require transcriptional reprogramming of cells and profound changes in plant metabolism. Due to the large number of genes involved in defense processes, rapid screening strategies are essential for elucidating the contributions of individual genes in the responses of plants to herbivory. However, databases and seed banks of mutant plants which allow rapid retrieval of mutant genotypes are limited to a few model plant species, namely, Arabidopsis thaliana and Oryza sativa (rice). In other plants, virus-induced gene silencing (VIGS) offers an efficient alternative for screening the functions of individual genes in order to prioritize the allocations of the large time investments required to establish stably transformed RNAi-silenced lines. With VIGS, it is usually possible to achieve strong, specific silencing of target genes in the ecological models Nicotiana attenuata and Solanum nigrum, allowing the rapid assessment of gene silencing effects on phytohormone accumulation, signal transduction and accumulation of defense metabolites. VIGS plants are also useful in bioassays with specialist and generalist herbivores, allowing direct verification of gene function in plant resistance to herbivores.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  PubMed  CAS  Google Scholar 

  2. Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    Article  PubMed  CAS  Google Scholar 

  3. Steppuhn A, Gase K, Krock B et al (2004) Nicotine’s defensive function in nature. PLoS Biol 2:e217

    Article  PubMed  Google Scholar 

  4. Zavala JA, Patankar AG, Gase K et al (2004) Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proc Natl Acad Sci USA 101:1607–1612

    Article  PubMed  CAS  Google Scholar 

  5. Kang JH, Wang L, Giri A et al (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    Article  PubMed  CAS  Google Scholar 

  6. Schwachtje J, Minchin PEH, Jahnke S et al (2006) SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc Natl Acad Sci USA 103:12935–12940

    Article  PubMed  CAS  Google Scholar 

  7. Wu J, Hettenhausen C, Meldau S et al (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122

    Article  PubMed  CAS  Google Scholar 

  8. Jassbi AR, Gase K, Hettenhausen C et al (2008) Silencing geranylgeranyldiphosphate synthase in Nicotiana attenuata dramatically impairs resistance to tobacco hornworm. Plant Physiol 146:974–986

    Article  PubMed  CAS  Google Scholar 

  9. Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202

    Article  PubMed  CAS  Google Scholar 

  10. Skibbe M, Qu N, Gális I et al (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20:1984–2000

    Article  PubMed  CAS  Google Scholar 

  11. Heiling S, Schuman M, Schöttner M et al (2010) Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22:273–292

    Article  PubMed  CAS  Google Scholar 

  12. Kaur H, Heinzel N, Schöttner M et al (2010) R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol 152:1731–1747

    Article  PubMed  CAS  Google Scholar 

  13. Hartl M, Giri A, Kaur H et al (2010) Serine protease inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development. Plant Cell 22:4158–4175

    Article  PubMed  CAS  Google Scholar 

  14. Hartl M, Merker H, Schmidt DD et al (2008) Optimized virus-induced gene silencing in Solanum nigrum reveals the defensive function of leucine aminopeptidase against herbivores and the shortcomings of empty vector controls. New Phytol 179:356–365

    Article  PubMed  CAS  Google Scholar 

  15. Liu Y, Schiff M, Marathe R et al (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  PubMed  CAS  Google Scholar 

  16. Ploeg AT, Robinson DJ, Brown DJF (1993) RNA-2 of tobacco rattle virus encodes the determinants of transmissibility by trichodorid vector nematodes. J Gen Virol 74:1463–1466

    Article  PubMed  CAS  Google Scholar 

  17. Hamilton RI (1974) Replication of plant viruses. Annu Rev Phytopathol 12:223–245

    Article  CAS  Google Scholar 

  18. Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–U201

    Article  PubMed  CAS  Google Scholar 

  19. Saedler R, Baldwin IT (2004) Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinase-inhibitors in Nicotiana attenuata. J Exp Bot 55:151–157

    Article  PubMed  CAS  Google Scholar 

  20. Schittko U, Preston CA, Baldwin IT (2000) Eating the evidence? Manduca sexta larvae can not disrupt specific jasmonate induction in Nicotiana attenuata by rapid consumption. Planta 210:343–346

    Article  PubMed  CAS  Google Scholar 

  21. Brigneti G, Martin-Hernandez AM, Jin H et al (2004) Virus-induced gene silencing in Solanum species. Plant J 39:264–272

    Article  PubMed  CAS  Google Scholar 

  22. Wu C, Jia L, Goggin F (2011) The reliability of virus-induced gene silencing experiments using tobacco rattle virus in tomato is influenced by the size of the vector control. Mol Plant Pathol 12:299–305

    Article  PubMed  CAS  Google Scholar 

  23. Thomas CL, Jones L, Baulcombe DC et al (2001) Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector. Plant J 25:417–425

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt DD, Kessler A, Kessler D et al (2004) Solanum nigrum: a model ecological expression system and its tools. Mol Ecol 13:981–995

    Article  PubMed  CAS  Google Scholar 

  25. Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? J Exp Bot 55:1445–1454

    Article  PubMed  CAS  Google Scholar 

  26. Deepak S, Kottapalli K, Rakwal R et al (2007) Real-time PCR: revolutionizing detection and expression analysis of genes. Curr Genomics 8:234–251

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Galis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Galis, I. et al. (2013). The Use of VIGS Technology to Study Plant–Herbivore Interactions. In: Becker, A. (eds) Virus-Induced Gene Silencing. Methods in Molecular Biology, vol 975. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-278-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-278-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-277-3

  • Online ISBN: 978-1-62703-278-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics