Skip to main content

Isolation of Bacterial Type IV Machine Subassemblies

  • Protocol
  • First Online:
Book cover Bacterial Cell Surfaces

Part of the book series: Methods in Molecular Biology ((MIMB,volume 966))

Abstract

The bacterial type IV secretion systems (T4SSs) deliver DNA and protein substrates to bacterial and eukaryotic target cells generally by a mechanism requiring direct contact between donor and target cells. Recent advances in defining the architectures of T4SSs have been made through isolation of machine subassemblies for further biochemical and ultrastructural analysis. Here, we describe a protocol for isolation and characterization of VirB protein complexes from the paradigmatic VirB/VirD4 T4SS of Agrobacterium tumefaciens. This protocol can be adapted for isolation of T4SS subassemblies from other gram-negative bacteria as well as gram-positive bacteria. The biological importance of isolated T4SS subcomplexes can be assessed by assaying for copurification of trapped or cross-linked substrates. This can be achieved with a modified form of the chromatin immunoprecipitation (ChIP) assay termed transfer DNA immunoprecipitation (TrIP). Here, a TrIP protocol is described for recovery of formaldehyde-cross-linked DNA substrate–channel subunit complexes from cells employing T4SSs for conjugative DNA transfer.

Mayukh K. Sarkar and Seyyed I. Husnain contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    Article  PubMed  CAS  Google Scholar 

  2. Fernandez D, Spudich GM, Zhou XR, Christie PJ (1996) The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178:3168–3176

    PubMed  CAS  Google Scholar 

  3. Hapfelmeier S, Domke N, Zambryski PC, Baron C (2000) VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol 182:4505–4511

    Article  PubMed  CAS  Google Scholar 

  4. Krall L et al (2002) Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99:11405–11410

    Article  PubMed  CAS  Google Scholar 

  5. Jakubowski SJ, Krishnamoorthy V, Christie PJ (2003) Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J Bacteriol 185:2867–2878

    Article  PubMed  CAS  Google Scholar 

  6. Cascales E, Christie PJ (2004) Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101:17228–17233

    Article  PubMed  CAS  Google Scholar 

  7. Yuan Q et al (2005) Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem 280:26349–26359

    Article  PubMed  CAS  Google Scholar 

  8. Paschos A et al (2006) Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity. Proc Natl Acad Sci U S A 103:7252–7257

    Article  PubMed  CAS  Google Scholar 

  9. Jakubowski SJ et al (2009) Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol Microbiol 71:779–794

    Article  PubMed  CAS  Google Scholar 

  10. Kerr JE, Christie PJ (2010) Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192:4923–4934

    Article  PubMed  CAS  Google Scholar 

  11. Mossey P, Hudacek A, Das A (2010) Agrobacterium tumefaciens type IV secretion protein VirB3 is an inner membrane protein and requires VirB4, VirB7, and VirB8 for stabilization. J Bacteriol 192:2830–2838

    Article  PubMed  CAS  Google Scholar 

  12. Banta LM et al (2011) An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J Bacteriol 193:2566–2574

    Article  PubMed  CAS  Google Scholar 

  13. Sivanesan D, Baron C (2011) The dimer interface of Agrobacterium tumefaciens VirB8 is important for type IV secretion system function, stability, and association of VirB2 with the core complex. J Bacteriol 193:2097–2106

    Article  PubMed  CAS  Google Scholar 

  14. Yeo HJ, Savvides SN, Herr AB, Lanka E, Waksman G (2000) Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6:1461–1472

    Article  PubMed  CAS  Google Scholar 

  15. Gomis-Ruth FX et al (2001) The bacterial conjugation protein TrwB resembles ring helicases and F1- ATPase. Nature 409:637–641

    Article  PubMed  CAS  Google Scholar 

  16. Hare S, Bayliss R, Baron C, Waksman G (2006) A large domain swap in the VirB11 ATPase of Brucella suis leaves the hexameric assembly intact. J Mol Biol 360:56–66

    Article  PubMed  CAS  Google Scholar 

  17. Yeo H-J, Yuan Q, Beck MR, Baron C, Waksman G (2003) Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc Natl Acad Sci U S A 100:15947–15952

    Article  PubMed  CAS  Google Scholar 

  18. Bayliss R et al (2007) NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc Natl Acad Sci U S A 104:1673–1678

    Article  PubMed  CAS  Google Scholar 

  19. Terradot L et al (2005) Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc Natl Acad Sci U S A 102:4956–4961

    Article  Google Scholar 

  20. Bailey S, Ward D, Middleton R, Grossmann JG, Zambryski PC (2006) Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci U S A 103:2582–2587

    Article  PubMed  CAS  Google Scholar 

  21. Fronzes R et al (2009) Structure of a type IV secretion system core complex. Science 323:266–268

    Article  PubMed  CAS  Google Scholar 

  22. Chandran V et al (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462:1011–1015

    Article  PubMed  CAS  Google Scholar 

  23. Cascales E, Christie PJ (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173

    Article  PubMed  CAS  Google Scholar 

  24. Jakubowski SJ, Krishnamoorthy V, Cascales E, Christie PJ (2004) Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J Mol Biol 341:961–977

    Article  PubMed  CAS  Google Scholar 

  25. Jakubowski SJ, Cascales E, Krishnamoorthy V, Christie PJ (2005) Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187:3486–3495

    Article  PubMed  CAS  Google Scholar 

  26. Christie PJ (2009) Structural biology: translocation chamber’s secrets. Nature 462:992–994

    Article  PubMed  CAS  Google Scholar 

  27. Kubori T et al (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605

    Article  PubMed  CAS  Google Scholar 

  28. Sukhan A, Kubori T, Wilson J, Galan JE (2001) Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J Bacteriol 183:1159–1167

    Article  PubMed  CAS  Google Scholar 

  29. Einhauer A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt TG, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535

    Article  PubMed  CAS  Google Scholar 

  31. Berger BR, Christie PJ (1994) Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176:3646–3660

    PubMed  CAS  Google Scholar 

  32. Chen Y et al (2008) Enterococcus faecalis PcfC, a spatially localized substrate receptor for type IV secretion of the pCF10 transfer intermediate. J Bacteriol 190:3632–3645

    Article  PubMed  CAS  Google Scholar 

  33. Thomas J, Hecht DW (2007) Interaction of Bacteroides fragilis pLV22a relaxase and transfer DNA with Escherichia coli RP4-TraG coupling protein. Mol Microbiol 66:948–960

    Article  PubMed  CAS  Google Scholar 

  34. Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 11:83–93

    Article  PubMed  CAS  Google Scholar 

  35. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1:179–185

    Article  PubMed  CAS  Google Scholar 

  36. Grably M, Engelberg D (2010) A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae. Methods Mol Biol 638:211–224

    Article  PubMed  CAS  Google Scholar 

  37. Baron C, Domke N, Beinhofer M, Hapfelmeier S (2001) Elevated temperature differentially affects virulence, VirB protein accumulation, and T-Pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183:6852–6861

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Waksman, Galan, and Baron laboratories for sharing ideas regarding biochemical enrichments of T4SS subassemblies. We thank Drs. Sayyed Shah and Eric Cascales for initiating studies in this laboratory aimed at isolation of T4SS subassemblies and cross-linked DNA substrate–channel subunit complexes. We thank other members of the Christie laboratory for valuable discussions and technical expertise. This work was supported by NIH grant GM48746 to PJC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Christie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sarkar, M.K., Husnain, S.I., Jakubowski, S.J., Christie, P.J. (2013). Isolation of Bacterial Type IV Machine Subassemblies. In: Delcour, A. (eds) Bacterial Cell Surfaces. Methods in Molecular Biology, vol 966. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-245-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-245-2_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-244-5

  • Online ISBN: 978-1-62703-245-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics