Skip to main content

p53 and Cell Cycle Effects After DNA Damage

  • Protocol
  • First Online:
p53 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 962))

Abstract

Flow cytometry, a valuable technique that employs the principles of light scattering, light excitation, and emission of fluorochrome molecules, can be used to assess the cell cycle position of individual cells based on DNA content. After the permeabilization of cells, the DNA can be stained with a fluorescent dye. Cells which have a 2N amount of DNA can be distinguished from cells with a 4N amount of DNA, making flow cytometry a very useful tool for the analysis of cell cycle checkpoints following DNA damage. A critical feature of the cellular response to DNA damage is the ability to pause and repair the damage so that consequential mutations are not passed along to daughter generations of cells. If cells arrest prior to DNA replication, they will contain a 2N amount of DNA, whereas arrest after replication but before mitosis will result in a 4N amount of DNA. Using this technique, the role that p53 plays in cell cycle checkpoints ­following DNA damage can be evaluated based on changes in the profile of the G1, S, and G2/M phases of the cell cycle.

The online version of the original chapter can be found at http://dx.doi.org/10.1007/978-1-62703-236-0_20

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-62703-236-0_20

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    Article  PubMed  CAS  Google Scholar 

  2. Paulovich AG, Toczyski DP, Hartwell LH (1997) When checkpoints fail. Cell 88:315–321

    Article  PubMed  CAS  Google Scholar 

  3. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711

    Article  PubMed  CAS  Google Scholar 

  4. Pietenpol JA, Tokino T, Thiagalingam S, el-Deiry WS, Kinzler KW, Vogelstein B (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci USA 91:1998–2002

    Article  PubMed  CAS  Google Scholar 

  5. Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093

    Article  PubMed  CAS  Google Scholar 

  6. Burns TF, El-Deiry WS (1999) The p53 ­pathway and apoptosis. J Cell Physiol 181:231–239

    Article  PubMed  CAS  Google Scholar 

  7. Bargonetti J, Manfredi JJ (2002) Multiple roles of the tumor suppressor p53. Curr Opin Oncol 14:86–91

    Article  PubMed  CAS  Google Scholar 

  8. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  PubMed  CAS  Google Scholar 

  9. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  PubMed  CAS  Google Scholar 

  10. Waldman T, Kinzler KW, Vogelstein B (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55:5187–5190

    PubMed  CAS  Google Scholar 

  11. Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578

    Article  PubMed  CAS  Google Scholar 

  12. Agarwal ML, Agarwal A, Taylor WR, Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92:8493–8497

    Article  PubMed  CAS  Google Scholar 

  13. Flatt PM, Tang LJ, Scatena CD, Szak ST, Pietenpol JA (2000) p53 regulation of G(2) checkpoint is retinoblastoma protein dependent. Mol Cell Biol 20:4210–4223

    Article  PubMed  CAS  Google Scholar 

  14. Matsuoka S, Huang M, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897

    Article  PubMed  CAS  Google Scholar 

  15. Taylor WR, DePrimo SE, Agarwal A, Agarwal ML, Schonthal AH, Katula KS, Stark GR (1999) Mechanisms of G2 arrest in response to overexpression of p53. Mol Biol Cell 10:3607–3622

    PubMed  CAS  Google Scholar 

  16. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501

    Article  PubMed  CAS  Google Scholar 

  17. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B (1999) 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401:616–620

    Article  PubMed  CAS  Google Scholar 

  18. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  19. Malkin D (1993) p53 and the Li-Fraumeni syndrome. Cancer Genet Cytogenet 66:83–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is appreciative to Melissa Mattia-Sansorbrino and Emir Senturk for their contributions to the figures presented in this chapter. The authors are supported by grants from the National Cancer Institute (P01 CA080058, R01 CA125741, and R01 CA086001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Manfredi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Senturk, E., Manfredi, J.J. (2013). p53 and Cell Cycle Effects After DNA Damage. In: Deb, S., Deb, S. (eds) p53 Protocols. Methods in Molecular Biology, vol 962. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-236-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-236-0_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-235-3

  • Online ISBN: 978-1-62703-236-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics