Skip to main content

Sialic Acid Capture-and-Release and LC-MSn Analysis of Glycopeptides

  • Protocol
  • First Online:
Mass Spectrometry of Glycoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 951))

Abstract

Extracellular glycoproteins frequently carry terminal sialic acids on their N-linked and/or O-linked glycan structures. In this chapter a sialic acid specific capture-and-release protocol for the enrichment of N- and O-glycopeptides originating from glycoproteins in complex biological samples is described. The enriched glycopeptides are subjected to reversed phase liquid chromatography (LC) interfaced with electrospray ionization and multistage tandem mass spectrometry (MSn). The glycopeptide precursor ions are fragmented by collision-induced dissociation (CID) for analysis of the glycan parts in the MS2 spectra. Further fragmentation (i.e., MS3) of deglycosylated peptide ions results in peptide backbone fragmentation, which is used in protein database searches to identify protein sequences. For O-glycopeptides the use of both CID and electron capture dissociation (ECD) fragmentation of the peptide backbone with intact glycans still attached are used to pinpoint the glycosylation sites of glycopeptides containing several Ser/Thr residues. The step-by-step protocols for fragmentation analyses of O- and N-glycopeptides enriched from human cerebrospinal fluid are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki A et al (2009) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  2. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867

    Article  CAS  PubMed  Google Scholar 

  3. Cohen M, Varki A (2010) The sialome—far more than the sum of its parts. OMICS 14:455–464

    Article  CAS  PubMed  Google Scholar 

  4. Magnani JL (2004) The discovery, biology, and drug development of sialyl Lea and sialyl Lex. Arch Biochem Biophys 426:122–131

    Article  CAS  PubMed  Google Scholar 

  5. Olofsson S, Bergstrom T (2005) Glycoconjugate glycans as viral receptors. Ann Med 37:154–172

    Article  CAS  PubMed  Google Scholar 

  6. Orlando R (2010) Quantitative glycomics. Methods Mol Biol 600:31–49

    Article  CAS  PubMed  Google Scholar 

  7. Vanderschaeghe D, Festjens N, Delanghe J, Callewaert N (2010) Glycome profiling using modern glycomics technology: technical aspects and applications. Biol Chem 391:149–161

    Article  CAS  PubMed  Google Scholar 

  8. Zaia J (2008) Mass spectrometry and the emerging field of glycomics. Chem Biol 15:881–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karlsson H et al (2009) High-throughput and high-sensitivity nano-LC/MS and MS/MS for O-glycan profiling. Methods Mol Biol 534:117–131

    CAS  PubMed  Google Scholar 

  10. Carr SA, Huddleston MJ, Bean MF (1993) Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 2:183–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Demelbauer UM, Zehl M, Plematl A, Allmaier G, Rizzi A (2004) Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Commun Mass Spectrom 18:1575–1582

    Article  CAS  PubMed  Google Scholar 

  12. Kawasaki N, Itoh S, Yamaguchi T (2009) LC/MSn for glycoprotein analysis: N-linked glycosylation analysis and peptide sequencing of glycopeptides. Methods Mol Biol 534:239–248

    CAS  PubMed  Google Scholar 

  13. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  PubMed  Google Scholar 

  14. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  15. Zauner G, Koeleman CAM, Deelder AM, Wuhrer M (2010) Protein glycosylation analysis by HILIC-LC-MS of Proteinase K-generated N- and O-glycopeptides. J Sep Sci 33:903–910

    Article  CAS  PubMed  Google Scholar 

  16. Scott NE et al (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, HCD and ETD-MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 10(2):M000031–MCP201

    Article  PubMed  Google Scholar 

  17. Mysling S, Palmisano G, Højrup P, Thaysen-Andersen M (2010) Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal Chem 82:5598–5609

    Article  CAS  PubMed  Google Scholar 

  18. Hägglund P et al (2007) An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. J Proteome Res 6:3021–3031

    Article  PubMed  Google Scholar 

  19. Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76:6560–6565

    Article  CAS  PubMed  Google Scholar 

  20. Kubota K et al (2008) Analysis of glycopeptides using lectin affinity chromatography with MALDI-TOF mass spectrometry. Anal Chem 80(10):3693–3698

    Article  CAS  PubMed  Google Scholar 

  21. Darula Z, Medzihradszky KF (2009) Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol Cell Proteomics 8:2515–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaji H et al (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21:667–672

    Article  CAS  PubMed  Google Scholar 

  23. Hashii N et al (2009) Identification of glycoproteins carrying a target glycan-motif by liquid chromatography/multiple-stage mass spectrometry: identification of Lewis x-conjugated glycoproteins in mouse kidney. J Proteome Res 8:3415–3429

    Article  CAS  PubMed  Google Scholar 

  24. Zhao J, Simeone DM, Heidt D, Anderson MA, Lubman DM (2006) Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J Proteome Res 5:1792–1802

    Article  CAS  PubMed  Google Scholar 

  25. Bunkenborg J, Pilch BJ, Podtelejnikov AV, Wiśniewski JR (2004) Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 4:454–465

    Article  CAS  PubMed  Google Scholar 

  26. Larsen MR, Jensen SS, Jakobsen LA, Heegaard NHH (2007) Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 6:1778–1787

    Article  CAS  PubMed  Google Scholar 

  27. Larsen MR, Højrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4:107–119

    Article  CAS  PubMed  Google Scholar 

  28. Selby DS, Larsen MR, Calvano CD, Jensen ON (2008) Identification and characterization of N-glycosylated proteins using proteomics. Methods Mol Biol 484:263–276

    Article  CAS  PubMed  Google Scholar 

  29. Nilsson J et al (2009) Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods 6:809–811

    Article  CAS  PubMed  Google Scholar 

  30. Nilsson J, Nilsson J, Larson G, Grahn A (2010) Characterization of site-specific O-glycan structures within the mucin-like domain of -dystroglycan from human skeletal muscle. Glycobiology 20:1160–1169

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, X-j L, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    Article  CAS  PubMed  Google Scholar 

  32. Zhang H et al (2005) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 4:144–155

    Article  CAS  PubMed  Google Scholar 

  33. Tian Y, Zhou Y, Elliott S, Aebersold R, Zhang H (2007) Solid-phase extraction of N-linked glycopeptides. Nat Protoc 2:334–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang H, Aebersold R (2006) Isolation of glycoproteins and identification of their N-linked glycosylation sites. Methods Mol Biol 328:177–185

    CAS  PubMed  Google Scholar 

  35. Kurogochi M et al (2007) Reverse glycoblotting allows rapid-enrichment glycoproteomics of biopharmaceuticals and disease-related biomarkers. Angew Chem Int Ed Engl 46:8808–8813

    Article  CAS  PubMed  Google Scholar 

  36. Kurogochi M et al (2010) Sialic acid-focused quantitative mouse serum glycoproteomics by multiple reaction monitoring assay. Mol Cell Proteomics 9(1):2354–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884

    Article  CAS  PubMed  Google Scholar 

  38. Neumann GM, Marinaro JA, Bach LA (1998) Identification of O-glycosylation sites and partial characterization of carbohydrate structure and disulfide linkages of human insulin-like growth factor binding protein 6. Biochemistry 37:6572–6585

    Article  CAS  PubMed  Google Scholar 

  39. Marinaro JA, Neumann GM, Russo VC, Leeding KS, Bach LA (2000) O-glycosylation of insulin-like growth factor (IGF) binding protein-6 maintains high IGF-II binding affinity by decreasing binding to glycosaminoglycans and susceptibility to proteolysis. Eur J Biochem 267:5378–5386

    Article  CAS  PubMed  Google Scholar 

  40. Strohalm M, Hassman M, Košata B, Kodíček M (2008) mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom 22:905–908

    Article  PubMed  Google Scholar 

  41. Strohalm M, Kavan D, Novák P, Volný M, Havlícek V (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651

    Article  CAS  PubMed  Google Scholar 

  42. Krokhin OV, Ens W, Standing KG (2003) Characterizing degradation products of peptides containing N-terminal Cys residues by (off-line high-performance liquid chromatography)/matrix-assisted laser desorption/ionization quadrupole time-of-flight measurements. Rapid Commun Mass Spectrom 17:2528–2534

    Article  CAS  PubMed  Google Scholar 

  43. Krokhin OV, Antonovici M, Ens W, Wilkins JA, Standing KG (2006) Deamidation of -Asn-Gly- sequences during sample preparation for proteomics: consequences for MALDI and HPLC-MALDI analysis. Anal Chem 78:6645–6650

    Article  CAS  PubMed  Google Scholar 

  44. Breci LA, Tabb DL, Yates JR, Wysocki VH (2003) Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal Chem 75:1963–1971

    Article  CAS  PubMed  Google Scholar 

  45. Loo JA, Edmonds CG, Smith RD (1993) Tandem mass spectrometry of very large molecules. 2. Dissociation of multiply charged proline-containing proteins from electrospray ionization. Anal Chem 65:425–438

    Article  CAS  PubMed  Google Scholar 

  46. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601

    Article  CAS  PubMed  Google Scholar 

  47. Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal Chem 71:4431–4436

    Article  CAS  PubMed  Google Scholar 

  48. Alley WR, Mechref Y, Novotny MV (2009) Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom 23:161–170

    Article  CAS  PubMed  Google Scholar 

  49. Perdivara I et al (2009) Elucidation of O-glycosylation structures of the beta-amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision induced dissociation. J Proteome Res 8:631–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takahashi N, Takahashi Y, Putnam FW (1984) Structure of human hemopexin: O-glycosyl and N-glycosyl sites and unusual clustering of tryptophan residues. Proc Natl Acad Sci USA 81:2021–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marcus F (1985) Preferential cleavage at aspartyl-prolyl peptide bonds in dilute acid. Int J Pept Protein Res 25:542–546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Adnan Halim, Ammi Grahn, Ulla RĂĽetschi, Gunnar Brinkmalm, Henrik Zetterberg, and Kaj Blennow for individual contributions to the glycoproteomic project. Funding from the Swedish Medical Research Council (8266) and governmental ALF grants to the Sahlgrenska University Hospital are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nilsson, J., Larson, G. (2013). Sialic Acid Capture-and-Release and LC-MSn Analysis of Glycopeptides. In: Kohler, J., Patrie, S. (eds) Mass Spectrometry of Glycoproteins. Methods in Molecular Biology, vol 951. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-146-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-146-2_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-145-5

  • Online ISBN: 978-1-62703-146-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics